Общая характеристика изучаемого предмета
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Рабочая программа

Учебного предмета «Физика»

за курс среднего общего образования

(базовый уровень)

 

Срок реализации –2 года

Класс: 10-11

Составлена с учетом авторской рабочей программы Г.Я. Мякишева по физике 10-11 классов базового уровня, издательство "Просвещение" М; 2014г.

 

Программу составил: Попов А.В.

  

 

с. Выльгорт, 2018г



Пояснительная записка

Рабочая программа учебного предмета «Физика» составлена в соответствии с Федеральным государственным образовательным стандартом среднего общего образования, утвержденного Приказом Минобрнауки России от 17.05.2012 г № 413 «Об утверждении федерального государственного образовательного стандарта среднего общего образования» (ФГОС СОО) (в ред. Приказов от от 29.12.2014 года № 1645, от 31.12.2015 года № 1578), на основе примерной основной образовательной программы СОО, одобренной 28.06.2016г.№ 2/16-зУМО РФ,  и с учетом авторской программы Г.Я. Мякишева по физике 10-11 классов базового уровня. Программа обеспечена УМК по физике для 10–11-х классов автора Г.Я. Мякишева (базовый уровень).

Цели учебного предмета: изучение физики на базовом уровне ориентировано на обеспечение общеобразовательной и общекультурной подготовки выпускников.

Содержание базового курса позволяет использовать знания о физических объектах и процессах для обеспечения безопасности при обращении с приборами и техническими устройствами; для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; для принятия решений в повседневной жизни.

Изучение физики на базовом уровне направлено на достижение следующих целей:


усвоение знаний о фундаментальных физических законах и принципах, лежащих в основе современной физической картины мира; наиболее важных открытиях в области физики, оказавших определяющее влияние на развитие техники и технологии; методах научного познания природы;

овладение умениями проводить наблюдения, планировать и выполнять эксперименты, выдвигать гипотезы и строить модели, применять полученные знания по физике для объяснения разнообразных физических явлений и свойств веществ; практического использования физических знаний; оценивать достоверность естественно-научной информации;

развитие познавательных интересов, интеллектуальных и творческих способностей в процессе приобретения знаний и умений по физике с использованием различных источников информации и современных информационных технологий;

воспитание убежденности в возможности познания законов природы, использования достижений физики на благо развития человеческой цивилизации; в необходимости сотрудничества в процессе совместного выполнения задач, уважительного отношения к мнению оппонента при обсуждении проблем естественно-научного содержания; готовности к морально-этической оценке использования научных достижений; чувства ответственности за защиту окружающей среды;

использование приобретенных знаний и умений для решения практических задач повседневной жизни, обеспечения безопасности собственной жизни, рационального природопользования и охраны окружающей среды.


Познавательные универсальные учебные действия

Выпускник научится:

– искать и находить обобщенные способы решения задач, в том числе, осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;

– критически оценивать и интерпретировать информацию с разных позиций, распознавать и фиксировать противоречия в информационных источниках;

– использовать различные модельно-схематические средства для представления существенных связей и отношений, а также противоречий, выявленных в информационных источниках;

– находить и приводить критические аргументы в отношении действий и суждений другого; спокойно и разумно относиться к критическим замечаниям в отношении собственного суждения, рассматривать их как ресурс собственного развития;

– выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможностей для широкого переноса средств и способов действия;

– выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения;

– менять и удерживать разные позиции в познавательной деятельности.

 

Содержание учебного предмета

Механика

Границы применимости классической механики. Важнейшие кинематические характеристики – перемещение, скорость, ускорение. Основные модели тел и движений.

Взаимодействие тел. Законы Всемирного тяготения, Гука, сухого трения. Инерциальная система отсчета. Законы механики Ньютона.

Импульс материальной точки и системы. Изменение и сохранение импульса. Использование законов механики для объяснения движения небесных тел и для развития космических исследований. Механическая энергия системы тел. Закон сохранения механической энергии. Работа силы.

Равновесие материальной точки и твердого тела. Условия равновесия. Момент силы. Равновесие жидкости и газа. Движение жидкостей и газов.

Механические колебания и волны. Превращения энергии при колебаниях. Энергия волны.

Электродинамика

Электрическое поле. Закон Кулона. Напряженность и потенциал электростатического поля. Проводники, полупроводники и диэлектрики. Конденсатор.

Постоянный электрический ток. Электродвижущая сила. Закон Ома для полной цепи. Электрический ток в проводниках, электролитах, полупроводниках, газах и вакууме. Сверхпроводимость.

Индукция магнитного поля. Действие магнитного поля на проводник с током и движущуюся заряженную частицу. Сила Ампера и сила Лоренца. Магнитные свойства вещества.

Закон электромагнитной индукции. Электромагнитное поле. Переменный ток. Явление самоиндукции. Индуктивность. Энергия электромагнитного поля.

Электромагнитные колебания. Колебательный контур.

Электромагнитные волны. Диапазоны электромагнитных излучений и их практическое применение.

Геометрическая оптика. Волновые свойства света.

 

Строение Вселенной

Современные представления о происхождении и эволюции Солнца и звезд. Классификация звезд. Звезды и источники их энергии.

Галактика. Представление о строении и эволюции Вселенной.

 

Класс (72 ч, 2 ч в неделю)


Физика и научный метод познания (1 ч)

Что и как изучает физика? Научный метод познания. Наблюдение, научная гипотеза и эксперимент. Научные модели и научная идеализация. Границы применимости физических законов и теорий. Принцип соответствия. Современная физическая картина мира. Где используются физические знания и методы?


Механика (22 ч)


1. Кинематика (7 ч)

Система отсчёта. Материальная точка. Когда тело можно считать материальной точкой? Траектория, путь и перемещение.

Мгновенная скорость. Направление мгновенной скорости при криволинейном движении. Векторные величины и их проекции. Сложение скоростей. Прямолинейное равномерное движение.

Ускорение. Прямолинейное равноускоренное движение. Скорость и перемещение при прямолинейном равноускоренном движении.

Криволинейное движение. Движение тела, брошенного под углом к горизонту. Равномерное движение по окружности. Основные характеристики равномерного движения по окружности. Ускорение при равномерном движении по окружности.

Демонстрация
Зависимость траектории от выбора системы отсчёта.

 





Динамика (8 ч)

Закон инерции и явление инерции. Инерциальные системы отсчёта и первый закон Ньютона. Принцип относительности Галилея.

Место человека во Вселенной. Геоцентрическая система мира. Гелиоцентрическая система мира.

Взаимодействия и силы. Сила упругости. Закон Гука. Измерение сил с помощью силы упругости.
Сила, ускорение, масса. Второй закон Ньютона. Примеры применения второго закона Ньютона. Третий закон Ньютона. Примеры применения третьего закона Ньютона.

Закон всемирного тяготения. Гравитационная постоянная. Сила тяжести. Движение под действием сил всемирного тяготения. Движение искусственных спутников Земли и космических кораблей. Первая космическая скорость. Вторая космическая скорость.

Вес и невесомость. Вес покоящегося тела. Вес тела, движущегося с ускорением.

Силы трения. Сила трения скольжения. Сила трения покоя. Сила трения качения. Сила сопротивления в жидкостях и газах.

Демонстрации
Явление инерции.

Сравнение масс взаимодействующих тел. Второй закон Ньютона. Измерение сил.

Сложение сил.

Зависимость силы упругости от деформации. Силы трения.

Лабораторная работа

1. Изучение движения тела по окружности.

 

 



Термодинамика (8 ч)

Внутренняя энергия. Способы изменения внутренней энергии. Количество теплоты.

Первый закон термодинамики.

Тепловые двигатели. Холодильники и кондиционеры.

Второй закон термодинамики. Необратимость процессов и второй закон термодинамики.

Экологический и энергетический кризис. Охрана окружающей среды.

Фазовые переходы. Плавление и кристаллизация. Испарение и конденсация. Кипение.

Влажность, насыщенный и ненасыщенный пар.

Демонстрации
Модели тепловых двигателей.

Кипение воды при пониженном давлении.

Устройство психрометра и гигрометра.


Электростатика (8 ч)

Природа электричества. Роль электрических взаимодействий. Два рода электрических зарядов. Носители электрического заряда.

Взаимодействие электрических зарядов. Закон Кулона. Электрическое поле.

Напряжённость электрического поля. Линии напряжённости. Проводники и диэлектрики в электростатическом поле.

Потенциал электростатического поля и разность потенциалов. Связь между разностью потенциалов и напряжённостью электростатического поля.

Электроёмкость. Конденсаторы. Энергия электрического поля.

Демонстрации

Электрометр.

Проводники в электрическом поле.

Диэлектрики в электрическом поле.

Энергия заряженного конденсатора.

 



Обобщение, повторение (7 ч)

 

 

Класс (68 ч, 2 ч в неделю)


Электродинамика (продолжение) (10 ч)


1. Магнитные взаимодействия (6 ч)

Взаимодействие магнитов. Взаимодействие проводников с токами и магнитами. Взаимодействие проводников с токами. Связь между электрическим и магнитным взаимодействием. Гипотеза Ампера.

Магнитное поле. Магнитная индукция. Действие магнитного поля на проводник с током и на движущиеся заряженные частицы.

Демонстрации

Магнитное взаимодействие токов.

Отклонение электронного пучка магнитным полем.

Лабораторная работа

1. Наблюдение действия магнитного поля на проводник с током.


2. Электромагнитнаяиндукция (4 ч)

Явление электромагнитной индукции. Закон электромагнитной индукции. Правило Ленца. Явление самоиндукции. Индуктивность. Энергия магнитного поля.

Демонстрации
Зависимость ЭДС индукции от скорости изменения магнитного потока.

Лабораторная работа

2. Изучение явления электромагнитной индукции.

 





Колебания и волны (10 ч)

Оптика (13 ч)

Природа света. Развитие представлений о природе света. Прямолинейное распространение света. Отражение и преломление света.

Линзы. Построение изображений в линзах. Глаз и оптические приборы.

Световые волны. Интерференция света. Дифракция света. Соотношение между волновой и геометрической оптикой.

Дисперсия света. Окраска предметов. Инфракрасное излучение. Ультрафиолетовое излучение.

Демонстрации

Интерференция света. Дифракция света.

Получение спектра с помощью призмы.

Получение спектра с помощью дифракционной решётки.

Поляризация света.

Прямолинейное распространение, отражение и преломление света.

Оптические приборы.

Лабораторные работы

4. Определение показателя преломления стекла.

5. Определение оптической силы и фокусного расстояния собирающей линзы.

6. Измерение длины световой волны.

7. Наблюдение сплошного и линейчатого спектров.

 

Квантовая физика (13 ч)

Равновесное тепловое излучение. Гипотеза Планка. Фотоэффект. Теория фотоэффекта. Применение фотоэффекта.

Опыт Резерфорда. Планетарная модель атома. Постулаты Бора. Атомные спектры. Спектральный анализ. Энергетические уровни. Лазеры. Спонтанное и вынужденное излучение. Применение лазеров.

Элементы квантовой механики. Корпускулярно-волновой дуализм. Вероятностный характер атомных процессов. Соответствие между классической и квантовой механикой.

Строение атомного ядра. Ядерные силы.

Радиоактивность. Радиоактивные превращения. Ядерные реакции. Энергия связи атомных ядер. Реакции синтеза и деления ядер.

Ядерная энергетика. Ядерный реактор. Цепные ядерные реакции. Принцип действия атомной электростанции. Перспективы и проблемы ядерной энергетики. Влияние радиации на живые организмы.

Мир элементарных частиц. Открытие новых частиц. Классификация элементарных частиц. Фундаментальные частицы и фундаментальные взаимодействия.

Демонстрации

Фотоэффект.

Линейчатые спектры излучения.

 

 

Класс

№ по порядку

Наименование раздела /темы

Количество часов

В том числе

к/р л/р 1 Физика и методы научного познания. 1     2 Механика. Кинематика точки и твердого тела. Динамика. Законы сохранения в механике. 22 7 8 7 1     1 2   1 1 3 Молекулярная физика. Основы МКТ. Температура. Энергия теплового движения молекул. Уравнение состояния идеального газа. Газовые законы. Основы термодинамики. 21 14     7 2 1     1 1 1 4 Основы электродинамики. Электростатика. Законы постоянного тока. Электрический ток в различных средах. 23 8 9 6 2 1 1 3   3   Повторение. 4       Годовая промежуточная аттестация 1 1     Итого: 72 6 6

Тематическое планирование

Класс

№ по порядку

Наименование раздела /темы

Количество часов

В том числе

к/р л/р 1 Основы электродинамики (продолжение). Магнитное поле. Электромагнитная индукция. 12 7 5 2 1 1 2 1 1 2 Колебания и волны. Механические колебания. Электромагнитные колебания. Механические волны. Электромагнитные волны. 14 3 5 2 4 1   1 1 1   3 Оптика. Световые волны. Элементы теории относительности. 18 16 2 1 1 4 4 4 Квантовая физика. Световые кванты. Атомная физика. Физика атомного ядра. 13 4 2 7 1     1   5 Строение и эволюция Вселенной. 5     6 Значение физики для объяснения мира. 1       Повторение. 4       Годовая промежуточная аттестация 1 1     Итого: 68 6 7

 

Планируемые результаты освоения предмета


Выпускник на базовом уровне научится:

- демонстрировать на примерах роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей;

- демонстрировать на примерах взаимосвязь между физикой и другими естественными науками;

- устанавливать взаимосвязь естественно-научных явлений и применять основные физические модели для их описания и объяснения;

- использовать информацию физического содержания при решении учебных, практических, проектных и исследовательских задач, интегрируя информацию из различных источников и критически ее оценивая;

- использовать современные IT-технологии для поиска, обработки и хранения информации физического содержания в ходе решения различных образовательных задач;

- различать и уметь использовать в учебно-исследовательской деятельности методы научного познания (наблюдение, описание, измерение, эксперимент, выдвижение гипотезы, моделирование и др.) и формы научного познания (факты, законы, теории), демонстрируя на примерах их роль и место в научном познании;

- проводить прямые и косвенные изменения физических величин, выбирая измерительные приборы с учетом необходимой точности измерений, планировать ход измерений, получать значение измеряемой величины и оценивать относительную погрешность по заданным формулам;

- проводить исследования зависимостей между физическими величинами: проводить измерения и определять на основе исследования значение параметров, характеризующих данную зависимость между величинами, и делать вывод с учетом погрешности измерений;

- использовать для описания характера протекания физических процессов физические величины и демонстрировать взаимосвязь между ними;

- использовать для описания характера протекания физических процессов физические законы с учетом границ их применимости;

- использовать IT-средства для наглядного представления результатов своей образовательной деятельности в виде презентаций, электронных отчетов и творческих работ;

- решать качественные задачи (в том числе и межпредметного характера): используя модели, физические величины и законы, а также средства информационных технологий, выстраивать логически верную цепочку объяснения (доказательства) предложенного в задаче процесса (явления);

- решать расчетные задачи с явно заданной физической моделью: на основе анализа условия задачи выделять физическую модель, находить физические величины и законы, необходимые и достаточные для ее решения, проводить расчеты и проверять полученный результат;

- учитывать границы применения изученных физических моделей при решении физических и межпредметных задач;

- использовать информацию и применять знания о принципах работы и основных характеристиках изученных машин, приборов и других технических устройств для решения практических, учебно-исследовательских и проектных задач;

- использовать знания о физических объектах и процессах в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде, для принятия решений в повседневной жизни.

 

   

Выпускник на базовом уровне получит возможность научиться:

понимать и объяснять целостность физической теории, различать границы ее применимости и место в ряду других физических теорий;

владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;

характеризовать системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;

выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;

самостоятельно планировать и проводить физические эксперименты;

характеризовать глобальные проблемы, стоящие перед человечеством: энергетические, сырьевые, экологические, – и роль физики в решении этих проблем;

решать практико-ориентированные качественные и расчетные физические задачи с выбором физической модели, используя несколько физических законов или формул, связывающих известные физические величины, в контексте межпредметных связей;

объяснять принципы работы и характеристики изученных машин, приборов и технических устройств;

объяснять условия применения физических моделей при решении физических задач, находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний, так и при помощи методов оценки.


Учебно-методическое и материально-техническое обеспечение образовательного процесса



Класс

· Физика. Рабочие программы. 10–11 класс. Базовый и углублённый уровни. Шаталина А.В.

· Физика. Поурочные разработки. 10 класс. Сауров Ю.А.

· Физика. 10 класс. (базовый уровень). Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. (под ред. Парфентьевой Н.А.)

· Физика. 10 класс. Электронное приложение (DVD) к учебнику Мякишева Г.Я., Буховцева Б.Б., Сотского Н.Н. (под ред. Парфентьевой Н.А.)

Класс

· Физика. Рабочие программы. 10–11 класс. Базовый и углублённый уровни. Шаталина А.В.

· Физика. Поурочные разработки. 11 класс. Сауров Ю.А.

· Физика. 11 класс. (базовый уровень). Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М.(под ред. Парфентьевой Н.А.)

· Физика. 11 класс. Электронное приложение (DVD) к учебнику Мякишева Г.Я., Буховцева Б.Б., Чаругина В.М. (под ред. Парфентьевой Н.А.)

 

Техническое обеспечение образовательного процесса

1. Компьютер

2. Колонки

3. Интерактивная доска

4. Проектор

5. Документ-камера

 

Рабочая программа

Учебного предмета «Физика»

за курс среднего общего образования

(базовый уровень)

 

Срок реализации –2 года

Класс: 10-11

Составлена с учетом авторской рабочей программы Г.Я. Мякишева по физике 10-11 классов базового уровня, издательство "Просвещение" М; 2014г.

 

Программу составил: Попов А.В.

  

 

с. Выльгорт, 2018г



Пояснительная записка

Рабочая программа учебного предмета «Физика» составлена в соответствии с Федеральным государственным образовательным стандартом среднего общего образования, утвержденного Приказом Минобрнауки России от 17.05.2012 г № 413 «Об утверждении федерального государственного образовательного стандарта среднего общего образования» (ФГОС СОО) (в ред. Приказов от от 29.12.2014 года № 1645, от 31.12.2015 года № 1578), на основе примерной основной образовательной программы СОО, одобренной 28.06.2016г.№ 2/16-зУМО РФ,  и с учетом авторской программы Г.Я. Мякишева по физике 10-11 классов базового уровня. Программа обеспечена УМК по физике для 10–11-х классов автора Г.Я. Мякишева (базовый уровень).

Цели учебного предмета: изучение физики на базовом уровне ориентировано на обеспечение общеобразовательной и общекультурной подготовки выпускников.

Содержание базового курса позволяет использовать знания о физических объектах и процессах для обеспечения безопасности при обращении с приборами и техническими устройствами; для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; для принятия решений в повседневной жизни.

Изучение физики на базовом уровне направлено на достижение следующих целей:


усвоение знаний о фундаментальных физических законах и принципах, лежащих в основе современной физической картины мира; наиболее важных открытиях в области физики, оказавших определяющее влияние на развитие техники и технологии; методах научного познания природы;

овладение умениями проводить наблюдения, планировать и выполнять эксперименты, выдвигать гипотезы и строить модели, применять полученные знания по физике для объяснения разнообразных физических явлений и свойств веществ; практического использования физических знаний; оценивать достоверность естественно-научной информации;

развитие познавательных интересов, интеллектуальных и творческих способностей в процессе приобретения знаний и умений по физике с использованием различных источников информации и современных информационных технологий;

воспитание убежденности в возможности познания законов природы, использования достижений физики на благо развития человеческой цивилизации; в необходимости сотрудничества в процессе совместного выполнения задач, уважительного отношения к мнению оппонента при обсуждении проблем естественно-научного содержания; готовности к морально-этической оценке использования научных достижений; чувства ответственности за защиту окружающей среды;

использование приобретенных знаний и умений для решения практических задач повседневной жизни, обеспечения безопасности собственной жизни, рационального природопользования и охраны окружающей среды.


Общая характеристика изучаемого предмета

В системе естественно-научного образования физика как учебный предмет занимает важное место в формировании научного мировоззрения и ознакомления обучающихся с методами научного познания окружающего мира, а также с физическими основами современного производства и бытового технического окружения человека; в формировании собственной позиции по отношению к физической информации, полученной из разных источников.

 

Место предмета в учебном плане

Федеральный базисный учебный план для образовательных учреждений Российской Федерации отводит 140 часов для обязательного изучения физики на базовом уровне ступени среднего (полного) общего образования, в том числе в 10 классе-72 часа, в 11 классе - 68 учебных часов в год  из расчета 2 учебных часа в неделю.

Формой годовой промежуточной аттестации учащихся является контрольная работа (тест).

 

Дата: 2019-02-25, просмотров: 193.