Вопрос 2. Неорганические вещества и соединения клетки
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

В состав клетки входит около 70 элементов Периодической системы элементов Менделеева, а 24 из них присутствуют во всех типах клеток. Все присутствующие в клетке элементы делятся, в зависимости от их содержания в клетке, на группы: органогены (кислород, водород, углерод, азот), макроэлементы, микроэлементы. Наиболее распространены в живых организмах и соответственно считаются основой жизни земле (в порядке убывающего числа атомов) четыре элемента: водород, углерод, кислород и азот. На их долю приходится более 90% как массы, так и числа атомов, входящих в состав всех живых организмов. Биологическое значение водорода, кислорода, азота и углерода связано в основном с их валентностью, равной соответственно 1,2,3 и 4, а также с их способностью образовывать более прочные ковалентные связи, нежели у других элементов той же валентности. Следующими по важности являются фосфор (Р), сера (S), ионы натрия, магния, хлора, калия и кальция (Na, Mg, Cl, К, Са). В качестве микроэлементов в живых организмах присутствуют также железо (Fe), кобальт (Со), медь (Си), цинк (Zn), бор (В), алюминий (Аl), кремний (Si), ванадий (V), молибден (Мо), иод (I), марганец (Мn).

Все химические элементы в виде ионов либо в составе тех или иных соединений участвуют в построении организма. Например, углерод, водород и кислород входят в состав углеводов и жиров. В составе белков к ним добавляются азот и сера, в составе нуклеиновых кислот - азот, фосфор, железо, участвующие в построении молекулы гемоглобина; магний находится в составе хлорофилла; медь обнаружена в некоторых окислительных ферментах; йод содержится в составе молекулы тироксина (гормона щитовидной железы); натрий и калий обеспечивают электрический заряд на мембранах нервных клеток и нервных волокон; цинк входит в молекулу гормона поджелудочной железы - инсулина; кобальт находится в составе витамина В12.

Соединения азота, фосфора, кальция и другие неорганические вещества служат источником строительного материала для синтеза органических молекул (аминокислот, белков, нуклеиновых кислот и др.) и входят в состав ряда опорных структур клетки и организма. Некоторые неорганическое ионы (например, ионы кальция и магния) являются активаторами и компонентами многих ферментов, гормонов и витаминов. При недостатке этих ионов нарушаются жизненно важные процессы в клетке.

Немаловажные функции в живых организмах выполняют неорганические кислоты и их соли. Соляная кислота входит в состав желудочного сока животных и человека, ускоряя процесс переваривания белков пищи. Остатки серной кислоты, присоединяясь к нерастворимым в воде чужеродным веществам, придают им растворимость, способствуя выведению из организма. Неорганические натриевые и калиевые соли азотистой и фосфорной кислот служат важными компонентами минерального питания растений, их вносят в почву в качестве удобрений. Соли кальция и фосфора входят в состав костной ткани животных. Диоксид углерода (СО2) постоянно образуется в природе при окислении органических веществ (гниение растительных и животных остатков, дыхание, сжигание топлива) в больших количествах он выделяется из вулканических трещин и из вод минеральных источников.

Значение углерода

Иногда говорят, что основу жизни на нашей планете составляет углерод. Этот элемент обнаружен во всех органических молекулах. Атомы углерода являются структурной основой всех органических соединений, образуя бесконечное множество различных веществ (известно несколько миллионов органических соединений). Органические соединения углерода являются одним из основополагающих факторов жизни на Земле. Углерод образует с другими элементами прочные ковалентные связи, т. е. обобществляет с ними электроны. Он образует четыре ковалентные связи; его валентность, следовательно, равна 4. Суммируем важные химические свойства углерода.

1.Его атомы сравнительно малы и атомная масса невелика.

2.Он способен образовывать четыре прочные ковалентные связи.

3.Он образует углерод—углеродные связи, строя таким путем длинные углеродные скелеты молекул в виде цепей и(или) колец.

4.Он может образовывать кратные ковалентные связи с другими углеродными атомами, а также с кислородом и азотом.

Это уникальное сочетание свойств обеспечивает колоссальное разнообразие органических молекул. Разнообразие проявляется в

1) размерах молекул, определяемых числом углеродных атомов в скелете;

2) химических свойствах, которые зависят от присоединенных к скелету элементов и химических групп, а также от степени насыщенности скелета;

3) различной форме молекул, определяемой геометрией, т. е. углами связей.

Вода

Без воды жизнь на нашей планете не могла бы существовать. Вода важна для живых организмов по двум причинам. Во-первых, она является необходимым компонентом живых клеток, и, вовторых, для многих организмов она служит еще и средой обитания. Свойства воды довольно необычны и обусловлены главным образом малыми размерами молекул, их полярностью и способностью соединяться друг с другом водородными связями. Под полярностью подразумевают неравномерное распределение зарядов в молекуле. У воды один конец молекулы («полюс») несет небольшой положительный заряд, а другой — отрицательный. Такую молекулу называют диполем.

Вода как растворитель.

Вода — превосходный растворитель для полярных веществ. К ним относятся ионные соединения, такие как соли, содержащие заряженные частицы (ионы), и некоторые неионные соединения, например сахара, в молекуле которых присутствуют полярные (слабо заряженные). Когда вещество растворяется в воде, молекулы воды окружают ионы и полярные группы, отделяя ионы или молекулы друг от друга.

В растворе молекулы или ионы получают возможность двигаться более свободно, так что реакционная способность вещества возрастает. По этой причине в клетке большая часть химических реакций протекает в водных растворах. Неполярные вещества, например липиды, отталкиваются водой и в ее присутствии обычно притягиваются друг к другу. Подобные гидрофобные взаимодействия играют важную роль в формировании мембран, а также в определении трехмерной структуры многих белковых молекул, нуклеиновых кислот и других клеточных компонентов.

Присущие воде свойства растворителя означают также, что вода служит средой для транспорта различных веществ. Эту роль она выполняет в крови, в лимфатической и экскреторной системах, в пищеварительном тракте и во флоэме и ксилеме растений.

Большая теплоемкость.. Удельной теплоемкостью воды называют количество теплоты, которое необходимо, чтобы поднять температуру 1 кг воды на 1°С. Вода обладает большой теплоемкостью. Это значит, что существенное увеличение тепловой энергии вызывает лишь сравнительно небольшое повышение ее температуры. Объясняется такое явление тем, что значительная часть энергии расходуется на разрыв водородных связей, ограничивающих подвижность молекул воды, т. е. на преодоление упомянутой выше «склеенности» ее молекул. Благодаря этому биохимические процессы протекают в меньшем интервале температур, с более постоянной скоростью, и опасность нарушения этих процессов от резких отклонений температуры грозит им не столь сильно

Большая теплота испарения.. Скрытая теплота испарения есть мера количества тепловой энергии, которую необходимо сообщить жидкости для ее перехода в пар. Испарение воды требует довольно значительных количеств энергии. Именно в силу этого температура кипения воды — вещества со столь малыми молекулами — необычно высока.

Энергия, необходимая молекулам воды для испарения, черпается из окружения. Таким образом, испарение сопровождается охлаждением. Большая теплота испарения означает, что отдача организмом даже больших количеств тепла сопровождается минимальными потерями воды, т. е. не обязательно ведет к его обезвоживанию.

Вода как реагент. Биологическое значение воды определяется тем, что она представляет собой один из необходимых метаболитов, т. е. участвует в метаболических реакциях. Вода используется, например, в качестве источника водорода при фотосинтезе, а также участвует в реакциях гидролиза.

Обобщая значение воды для живых организмов можно выделить следующие функции:

У всех организмов

Обеспечивает поддержание структуры (высокое содержание воды в клетках, 70—95%)

Служит растворителем и средой для диффузии Участвует в реакциях гидролиза Служит средой обитания для водных организмов Служит средой, в которой происходит оплодотворение Обеспечивает распространение семян, гамет и личиночных стадий водных организмов, а также семян некоторых наземных растений, например кокосовой пальмы

У растений

Обусловливает осмос и тургесцентность, от которых зависит многое: рост (увеличение размеров клеток), поддержание структуры, механизм работы устьиц и т. д.

Участвует в фотосинтезе

Обеспечивает транспирацию, а также транспорт неорганических ионов и органических молекул

Обеспечивает прорастание семян — набухание, разрыв семенной кожуры и дальнейшее развитие

У животных

Обеспечивает транспорт веществ по кровеносной, лимфатической и экскреторной системам

Обусловливает осморегуляцию

Способствует охлаждению тела (потоотделение, тепловая одышка)

Служит одним из компонентов смазки, например в суставах

Несет опорные функции (пример — гидростатический скелет аннелид)

Выполняет защитную функцию, например в слезной жидкости и в слизи

Способствует миграции (морские течения)

 

Дата: 2019-02-19, просмотров: 208.