История создания телевидения
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Введение


    Уже минул век, с тех пор как было изобретено радио. Свыше ста лет ведутся споры по установлению авторства этого изобретения. У нас бытует мнение, что радио изобрел известный российский ученый Попов, на Западе – что это был итальянец Маркони. Мы не будем пытаться установить историческую истину, тем более что так ли это теперь важно. Важно то, что мир получил уникальнейшее средство коммуникации.

Во многом именно благодаря изобретению и развитию радио произошел технический прорыв во многих областях науки и техники, связанных с обменом и обработкой информации. Радио послужило мощнейшим стимулом в исследовании и развитии электричества, стало основой электроники. Электроника, в свою очередь, позволила создать устройства неотъемлемо связанные с приемом и передачей информации, с управлением технологическими процессами, с измерениями и контролем. Именно в процессе развития радио были заложены основные принципы электронной обработки сигналов и вычислительной техники. Компьютеры и калькуляторы, локаторы и радиотелескопы, бытовые микроволновые печи и магнитофоны, роботы и космические станции, электронные часы и сердечные стимуляторы… и еще множество других электронных приборов и устройств могут считаться потомками первой системы «регистрации грозовых разрядов» Попова и радиоприемника Маркони.

    Только перечисление всех областей, где используется радио, заняло бы, пожалуй, не одну сотню страниц. Сегодня уже ни кого не удивляет возможность обмена информацией с любой точкой нашей планеты посредством радиоволн, а радиоприемники, телевизоры и портативные радиостанции стали настолько же привычны, как кино, автомобили и самолеты.

    Технический прогресс не перестает поражать темпами развития. Лишь вчера не сходившие с газетных передовиц и сенсационных обзоров изобретения и открытия сегодня уже перешли в разряд обыденных. Цифровые радиорелейные линии, беспроводные и сотовые телефоны, системы спутникового радио- и телевизионного вещания, дистанционное управление межпланетными космическими станциями, радиоастрономия, спутниковая навигация GPS…

 

    Промозглый декабрь 1821 года. Туманный Альбион. Лаборатория в мерцающем свете свечей. В своем дневнике пятидесятилетний Майкл записывает задачу: «превратить магнетизм в электричество». За 10 лет напряженного труда он осуществил «превращение». Скрипит перо, выводя строки очередной победы человеческого разума над тайнами Природы. 24 декабря 1831 была поставлена последняя точка в первой серии знаменитой книги «Экспериментальные исследования по электричеству».

Майкл Фарадей своим открытием явления электромагнитной индукции (порождение электрического поля переменным магнитным полем) заложил фундамент современной электротехники.

Шли годы. Были открыты законы взаимодействия неподвижных электрических зарядов (закон Кулона) и токов (закон Ампера). Установлено, что магнитные влияния есть взаимодействия движущихся электрических зарядов. Уже прозвучал термин «мировой эфир» – гипотетическая среда, через которую протянуты невидимые «упругие линии» магнитного и электрического взаимодействия. И вот новое событие!

В 1864 профессор экспериментальной физики в Кембридже Джеймс Клерк Максвелл математически доказал, что любое электрическое волнение может производить эффект на значительном расстоянии от точки где оно произошло и предсказал, что электромагнитная энергия может передаваться в направлении от источника в виде волн, перемещающихся со скоростью света (300 000 км/сек). К 1869 все основные закономерности поведения электромагнитного поля были установлены и сформулированы в виде системы четырех уравнений, получивших название «уравнения Максвелла».

Увы, но во времена Максвелла, еще не существовало средств порождения или обнаружения электромагнитных волн. Предсказания Максвелла о существовании электромагнитного поля показались современникам бесполезными. И только после того, как Генрих Герц в 1886–89 экспериментально доказал существование электромагнитных волн, почти через десять лет после смерти Максвелла, человечество задумалось о возможности их применения

Для проведения опытов с радиоволнами немецкий физик Генрих Рудольф Герц использовал разрядник (два электрода, разделенные воздушным зазором), установленный в центре параболического металлического отражателя. Металлическое кольцо с намотанной на нем катушкой подключалось к другому разряднику, идентичному первому. Искра, возникающая в первом разряднике, вызывала возникновение меньшей искры в зазоре второго. Таким образом, Герц доказал, что предсказания Максвелла были верны, по крайней мере, на коротких расстояниях. Было установлено, что электромагнитные волны распространялись прямолинейно и могли отражаться от металлических листов так же, как световые волны отражаются зеркалом.

Были открыты и экспериментально доказаны основные принципы, лежащие в основе передачи электромагнитной энергии на расстоянии. Осталось совсем немного – создать устройство способное к этому.

Идея по созданию радиоприемника материализовалась 7 мая, 1895 на заседании Русского физико-химического общества в Санкт-Петербургском университете.

В энциклопедии «Британика» («Britannica.com Inc.») сказано: «…Александр Степанович Попов, физик и инженер-электрик, считающийся в России изобретателем радио. Очевидно, что он создал первый примитивный радиоприемник – датчик молний (1895), независимо и без знания о современных работах итальянского изобретателя Гульельмо Маркони. Подлинность и значение успешных экспериментов Попова не подвергаются сомнению, но обычно признается приоритет Маркони».

В своих экспериментах Маркони подсоединял один из электродов разрядника к вертикально подвешенному проводу (играющему роль антенны), а другой электрод к земле (заземление). На приемной стороне системы использовалось аналогичное устройство. Расстояние между передатчиком и приемником постепенно увеличивалось: сначала до 300 ярдов (275 м), затем до 2-х миль (3 км), далее через Английский Канал (пролив Ла-Манш). Наконец в 1901 году Маркони «перебросил мост» через Атлантику, «связав» континенты. Знак «S» переданный азбукой Морзе пролетел сквозь пространство между местечком Полду на полуострове Корнуолл (Великобритания) и городом Сент-Джонс на полуострове Ньюфаундленд (Канада) преодолев со скоростью света расстояние почти 2 100 миль (3 500 км).


Радиосвязь как таковая

 

       К середине 90-х годов XIX века уже существовали основные элементы, требующиеся для практической реализации системы передачи сигналов посредством электромагнитных волн: катушка Румкорфа, вибратор Герца, когерер Лоджа. Над реализацией системы передачи работало множество исследователей. Однако только Попов и Маркони осуществили первые попытки увеличить расстояние между передатчиком и приемником, постепенно усовершенствуя разрядник и когерер и повышая эффективность системы с помощью антенны и заземления.

В 1899 П. Н. Рыбкин и Д. С. Троицкий – помощники Попова – обнаружили детекторный эффект когерера. На основе этого эффекта Попов построил «телефонный приёмник депеш» для слухового приёма радиосигналов (на головные телефоны) и запатентовал его (Русская привилегия № 6066 от 1901). Приёмники этого типа выпускались в 1899–1904 в России и во Франции (фирма «Дюкрете») и широко использовались для радиосвязи. В начале 1900 приборы Попова были применены для связи во время работ по ликвидации аварии броненосца «Генерал-адмирал Апраксин» у острова Гогланд и при спасении рыбаков, унесенных на льдине в море. При этом дальность связи достигла 45 км. В 1901 Попов в реальных корабельных условиях получил дальность связи 148–150 км.

Сильный ветер сорвал полотна огромных антенн, которые он построил в Англии. Сильный ветер сломал его мачты на другой стороне Атлантики в Ньюфаундленде, задержав эксперименты. Тогда было решено устанавливать антенны не на опорах, а поднимать на воздушных шарах и гигантских воздушных змеях. Но штормовой ветер разгадал и эту хитрость Маркони: его воздушные шары и три из четырех змеев были унесены. Но, несмотря на капризы погоды, в относительно безветренный день 12 декабря 1901 года Маркони все-таки услышал слабые сигналы с другой стороны Атлантики: точка, еще точка и опять точка… – символ «S» кода Морзе. Вряд ли в хронологии радио был более важный день или более важное свершение.

В октябре 1899 он отправился в США для обеспечения радиосвязью регаты на Кубок Америки, благодаря чему был удостоен долгожданного внимания прессы.

Командование американского флота пригласило его на демонстрацию радиотелеграфной связи между крейсером «Нью-Йорк» и линкором «Массачусетс» на расстояние около 35 миль (65 км). Все прошло удачно. Флот был поражен и увлечен. Сразу же было выражено желание установить беспроводные системы на все суда, теплоходы, патрульные катера и лодки. Но имелась одна маленькая проблема…

Один из офицеров сетовал: «Когда работает один передатчик, то все принимают. Но когда работают два передатчика одновременно, то в приемнике одновременно слышны оба сообщения. Мы не можем разобрать ни одно из них. Как вы предлагаете решить это, мистер Маркони?» Маркони не задумываясь, ответил, что оставил необходимое оборудование в Англии и обещал показать его в следующий приезд. Он блефовал. У него не было оборудования, чтобы «распутать» электромагнитный беспорядок. Но он был уверен, что создаст его. Если бы он мог заставить передающую станцию излучать только определенную волну и настроить на нее приемник…

По возвращению в Англию Маркони приглашает на работу наиболее известного мастера электроники Джона Флеминга. И уже в 1900 Маркони получает патент №7777 на «Oscillating Sintonic Circuit» – систему настройки. «Чтобы обеспечить установление четкой связи с одной или более передающих станций одному или нескольким приемникам».

Заслуга Маркони прежде всего в том, что он был «человеком системы», первым, кто успешно объединил чужие практические и теоретические изыскания в области беспроводной связи в бизнес.

Английский инженер Джон Флеминг внес значительный вклад в развитие электроники, фотометрии, электрические измерения и радиотелеграфную связь. Наиболее известно его изобретение радио детектора (выпрямителя) с двумя электродами, которое он назвал термоэлектронной лампой, также известной как вакуумный диод, кенотрон, электронная лампа и лампа или диод Флеминга.

Это устройство, запатентованное в 1904, стало первым электронным детектором радиоволн, преобразующим радиосигналы переменного тока в постоянный ток. Открытие Флеминга было первым шагом в эпоху ламповой электронной техники. Эпохи, которая продлилась без малого до конца XX века.

 

«Поющая дуга»

 

В 1900 уличные фонари в Лондоне, как и повсюду в Европе, были уже электрическими.

Это было время электродуговых угольных ламп (непрерывной электрической искры), но у них имелся неприятный недостаток – раздражающий, свистящий звук, издаваемый при горении. (Оказывается проблеме шума осветительных приборов уже более 100 лет. В частности, «свист» ламп дневного света в наше время также не доставляет радости.)

В 1903 Поулсен запатентовал «улучшенный дуговой генератор колебаний, использующий углеводородную атмосферу и магнитное поле» и первым предложил последовательное соединение дуговых ламп. В частности, улучшенная модификация генератора использовалась компанией «Telefunken». Построенная ею система в 1906 охватила 25 миль: «дуговые передатчики подключались последовательно по 6 генераторов при питании 220 В постоянного тока, по 12 при 440 В или по 24 при 880 В».

 

 

       Первые телеграфные радиосистемы обходились искровыми передатчиками, для передачи же голоса требовались незатухающие колебания. Дуга Поулсена обеспечивала именно незатухающие колебания.

 

Реализации


    В 1906 телеграфные операторы были очень удивлены, услышав среди атмосферных помех и «морзянки» звуки человеческого голоса. Первые удачные опыты вдохновили исследователей. Создание беспроводного телефона стало идеей фикс для множества ученых и изобретателей. Дальнейшее развитие радио разделилось на два направления. Радио – как средство коммуникаций и радио – как средство массовой информации и развлечения.

 

Одной из наиболее важных личностей в первом двадцатилетии развития радио как коммерческой связи, и радио как развлекательного вещания был Ли де Форест.

Наибольшую известность де Форест получил за изобретение 3-х электродной электронной вакуумной лампы.

В 1906 Форест добавил в диод Флеминга управляющий электрод – сетку. Новая лампа получила название «аудион» (в последующем известна как триод) и нашла важное применение в качестве усилителя сигналов.

 

    Эдвин Говард Армстронг, американский изобретатель и инженер-электрик, внес фундаментальный вклад в развитие радио. Изобрел регенеративную схему (обратную связь), супергетеродинный приемник, частотную модуляцию (ЧМ). Армстронг был отцом ЧМ радио, дедушкой радара и прадедушкой космической связи, но никогда не пожинал плодов своего гения.

Армстронг не изобрел радио. Это заслуга принадлежит Попову и Маркони. Но в 1912, в возрасте 22 лет, Армстронг выяснил, как работает электронная лампа де Фореста и использовал ее в необычном виде. Он взял электрический сигнал, полученный с выхода усилительной лампы, и подал его обратно на вход. И так снова и снова, каждый раз увеличивая мощность.

Он назвал это явление «регенерацией». Это был очень важный вклад в развитие радио, потому что, когда обратная связь была увеличена выше критического уровня, то электронная лампа продолжала колебания, которые создавали собственные радиоволны. Это было не только усиление радиосигналов, но и их генерация. Армстронг установил аудион Фореста и в приемник, и в передатчик. Это небольшое с виду новшество позволило избавиться от 20-тонных генераторов.

Армстронг изобрел устройство, названное странным словом «супергетеродинный приемник». Сложный продукт электронного колдовства, которое и сейчас является основным принципом практически всех радиоприемников, телевизоров и радаров.

Армстронг продолжал изобретать. Он начал работы над уменьшением статических помех, экспериментируя с тем, что позже станет известным как частотная модуляция.

Сигналы ЧМ не смешивались друг с другом, ЧМ радио просто принимало более сильный сигнал. Это подразумевало, что множество маломощных станций могло работать вблизи друг друга и использовать малую часть электромагнитного спектра.

 

Транзистор

 

       В 1956 американские физики Вильям Брэдфорд Шокли, Джон Бадин и Уолтер Брэттен были совместно удостоены Нобелевской премии в области физики за изобретение транзистора.

Слово «транзистор» возникло из сокращения двух английских слов: «transfer» – перемещать, переносить и «resistor» – резистор, сопротивление.

Транзистор произвел революцию в технологии радио. Он дал начало новому направлению – микроэлектронике и, в конечном итоге, привел к созданию микросхем, микропроцессоров, компьютеров и многих других устройств без которых мы в настоящее время не мыслим свою жизнь. Это был выход из «первобытного» века в век электронный, космический и компьютерный.

«Пластмассовая пластинка треугольной формы, обернутая золотой фольгой и охватывающая небольшой кусочек германия, который имеет электрический контакт в основании».

Это было примитивное устройство, но оно оказалось намного более эффективным по сравнению с электронной лампой. Оно позволяло пропускать и не пропускать ток и, кроме того, усиливать его.

Еще в 1939 Шокли предложил прообраз полевого транзистора, в котором использовались проводники, вставленные в оксид меди. Его устройство не было практически реализовано (изобретено в начале 60-х другими учеными), но полевой эффект стал основой будущих интегральных схем. Тогда же Шокли высказал предположение, что приборы, работающие на «полевом» принципе, смогут заменить механические и ламповые коммутаторы в телефонных станциях.

Даллас, штат Техас, 10 октября 2000.

 

       Компания «Texas Instruments» комментирует награждение Нобелевской премией в области физики Джека Килби, бывшего директора отдела технологических разработок «TI». Так отмечен его «вклад в изобретение интегральной схемы» (микросхемы), устройства, обычно называемого «чипом»…

Премия была разделена между Килби (1/2), российским физиком Жоресом Алферовым (1/4) и немецким ученым Гербертом Кроемом (Herbert Kroeme) (1/4). К сожалению, в российской периодике, не упоминалось имени человека, положившего начало современной микроэлектроники.

Это примитивное устройство – один транзистор и несколько пассивных компонентов на кусочке германия – Килби продемонстрировал горстке сотрудников, собравшихся в лаборатории полупроводниковой техники компании «Texas Instruments» почти пол века назад. Никто из присутствующих не предполагал, что «гадкий утенок» размером 11.1х1.6 мм, названный интегральной схемой (ИС) полностью преобразует электронную промышленность.

 

 

Лекция № 4


NTSC

PAL

SÉCAM

Долгое время люди мечтали о возможности передачи изображения и звука на расстояние. Одной из важной и первой вехой на пути развития телевидения или, как его тогда называли, радиовидения можно считать выделение в 1817 г селена шведским химиком Йенсом Якобом Берцелиусом [1779-1848], открытое в 1873 г американским ученым У.Смитом явление внутреннего фотоэффекта (впоследствии был использован при создании видикона) и установление в 1888 г русским физиком Александром Григорьевичем Столетовым [1839-1896] основных закономерностей внешнего фотоэффекта (впоследствии был использован при создании суперортиконов). Попытки передать изображение на расстояние при помощи электричества относится к 1876 г, когда Александр Грэхем Белл изобрел телефон. К этому времени было уже известно, что сопротивление селена изменяется в зависимости от количества падающей на него световой энергии. Поскольку А.Белл доказал возможность передачи на расстояние сложного сигнала, множество изобретателей начали разрабатывать способы "электрического видения" (как гласил один из заголовков статьи того времени).

В одних способах использовалась мозаика селеновых детекторов, в других изображение сканировалось механически одним или несколькими селеновыми датчиками. Для воспроизведения изображений также предлагались разнообразные методы от перемещения карандаша до электромеханического воздействия на лист бумаги, размещенный в приемнике и пропитанный химическим составом. Светочувствительные свойства селена на практике были использованы лишь в 1892 г, когда Элстер и Гейтл изобрели фотоэлемент. Именно такие элементы и явились принципиальной основой современного телевидения. Второй важной вехой в развитии телевидения стало изобретение, принесшее практическую пользу, созданного в 1882 г немецким экспериментатором Паулем Нипковым [1860-1940] "электрического телескопа" и запатентованного им в 1884 г. Идея Нипкова состояла в том, что на передающем конце линии изображение разлагается на отдельные электрические сигналы, затем осуществляется последовательная передача этих сигналов и восстановление этого полного изображения на приемном конце. Такой способ давал возможность передавать телевизионное изображение по одному телефонному или радиоканалу. Основу камеры составлял широко известный сейчас диск Нипкова. Он имел 24 отверстия, расположенных на равном расстоянии по спирали у периферии диска. Передаваемое изображение фокусировалось на небольшом участке периферии диска, а сам диск вращался с частотой 600 об/мин. При вращении диска изображение последовательно сканировалось отверстиями по прямым линиям. Линза, установленная за проецируемым изображением, собирала последовательные световые выборки и фокусировала их на одном селеновом элементе. При этом, селеновый элемент формировал последовательность токовых сигналов, каждый из которых был пропорционален яркости отдельных элементов изображения. На приемной стороне Нипков предложил использовать магнитооптический (основанный на эффекте Фарадея) модулятор света, изменяющий яркость восстанавливаемого изображения. Для формирования изображения был необходим другой диск, аналогичный диску передатчика и вращающийся синхронно с ним.

Нипков не занимался созданием аппаратуры, что было не столь важно, поскольку технология того времени не позволяла создать подобную систему (только один модулятор света потребовал бы управляющего сигнала мощностью 10 Вт). Однако его диск послужил моделью для нескольких более поздних телевизионных систем. В начале 20-х годов Джон Лодж Бэрд в Англии и Дженкинс в США совершенно независимо друг от друга провели целый ряд экспериментов по передаче телевидения с использованием механической развертки. Причем, Джона Бэрда больше интересовала проверка реализации своих идей, чем их промышленное внедрение.

В 1889 г в Санкт-Петербурге на Первом Всероссийском съезде Константин Дмитриевич Перский (преподаватель электротехники в Константиновском артиллерийском училище, капитан артиллерии) выступил с докладом "Современное состояние вопроса об электровидении на расстоянии (телевизирование)". Затем он повторил его 24 августа 1900 г в Париже на Международном электротехническом конгрессе, где впервые применил термин "телевидение" ("television"). До этого (как впрочем и до середины 30-х годов) в отношении телевидения в зарубежной и отечественной литературе применялись термины: "электрическая телескопия", "радиотелескопия" и "дальновидение".

Механическая система развертки накладывала вполне определенные ограничения на объем передаваемой информации, качество и размеры воспроизводимого изображения. Поэтому даже в более ранних работах, чем приведено выше, некоторых первых исследователей наблюдалась тенденция к использованию электронного оборудования, свободного от указанных выше недостатков. В 1906 г Дикман и Глейс в Германии, а в 1907 г петербургский электрофизик Борис Львович Розинг [1869-1933] получили патенты на системы телевидения, использующие приемник с электронно-лучевой трубкой (ЭЛТ). Первое предложение о телевизионной системе, полностью построенной на основе электронного оборудования было сделано Аланом Арчибальдом Кемпбеллом-Свинтоном в 1908 г. Как и П. Нипков, А.Кемпбелл-Свинтон не изготовил аппаратуру, но очень подробно описал свою идею в июньском номере журнала "Nature". Его система была основана на ЭЛТ, изобретенной в 1897 г Карлом Фердинандом Брауном в Страссбурге (трубка с множеством фотоэлементов, соединенных впараллель, каждый их которых до развертки записал определенный заряд и за каждый период развертки мог отдать только один импульс). А. Кемпбелл-Свинтон предложил использовать ЭЛТ как в передатчике, так и в приемнике. При этом он тогда отмечал, что главной проблемой является "создание эффективного передатчика, который под влиянием светлых и темных участков будет в достаточной степени изменять передаваемый электрический ток, чтобы обеспечить необходимую модуляцию электронного луча в приемном устройстве".

В 1911 г Б.Л.Розинг продемонстрировал в лабораторных условиях передачу телевизионных изображений простых геометрических фигур и прием их с воспроизведением на экране ЭЛТ.

В 1923 г американский инженер и изобретатель Владимир Кузьмич Зворыкин [1889-?] (русский по происхождению - в 1917 г эмигрировал из России в США, ученик Б.Л.Розинга) зарегистрировал патент на передающую телевизионную ЭЛТ, названную иконоскопом. Она отличалась от ранних образцов применением модуляции интенсивности электронного луча с помощью осесимметричной сетки. Принципиально важным в этой ЭЛТ было то, что фотокатоды из посеребренной слюды "запоминали" заряды, образуемые фокусируемым на них изображением, а сканирующий электронный луч нейтрализовывал заряды и одновременно модулировался. Следует отметить, что появившееся примерно в тот же период устройства без "запоминания" зарядов (например диссектор изображения Фила Фарнсуорта) были менее удачными. Через год после изобретения иконоскопа В.К.Зворыкин изобрел кинескоп - приемную телевизионную ЭЛТ с электростатическим отклонением и фокусировкой луча, став тем самым создателем основных передающего и приемного элементов электронного телевидения.

Одна из первых публичных демонстраций телевидения была осуществлена Дженкинсом 13 июня 1925 г, когда он передал изображение между аиационной станцией ВМС в Анакосте (шт. Мэриленд) и своей лабораторией в Вашингтоне (окр. Колумбия), т.е. на расстоянии в несколько км. При проведении этого эксперимента использовалась механическая система развертки.

В начале 30-х годов усилия ученых и изобретателей были направлены на разработку электронных систем развертки, т.е. развитие телевидения вступило в свой следующий этап развития - период совершенствования.

Телевидение уходит в массы

В 1925 году шведскому инженеру Джону Бэрду удалось впервые добиться передачи распознаваемых человеческих лиц. Опять таки с использованием диска Нипкова. Несколько позже, им же была разработана и первая телесистема, способная передавать движущиеся изображения.

Первый же электронный телевизор, пригодный для практического применения был разработан в американской научно-исследовательской лаборатории RCA, возглавляемой Зворыкиным, в конце 1936 года. Несколько позже, в 1939 году, RCA представила и первый телевизор, разработанный специально для массового производства. Эта модель получила название RCS TT-5. Она представляла из себя массивный деревянный ящик, оснащенный экраном с диагональю в 5 дюймов.

Первое время развитие телевидения шло в двух направлениях – электронном и механическом (иногда механическое телевидение называют еще и «малострочным телевидением»). Причем развитие механических систем происходило практически до конца 40-х годов 20-го века, прежде чем было полностью вытеснено электронными устройствами. На территории СССР, механические телесистемы продержались несколько дольше.

Параллельно разработка телевизоров происходила и на территории Советского Союза. Первая опытный сеанс телевещания состоялся 29 апреля 1931 года. С 1 октября того же года телепередачи стали регулярными. Так как телевизоров еще не у кого не было, проводились коллективные просмотры, с специально отведенных для этого местах. Многие советские радиолюбители начинают собирать механические модели телевизоров своими руками (немного подробнее об этом можно узнать в статье «Самодельный телевизор»).

В 1932 году, при разработке плана на вторую пятилетку, телевидению было уделено много внимания. 15 ноября 1934 года впервые состоялась трансляция телевизионной передачи со звуком. Довольно длительное время существовал лишь один канал – Первый канал. На время Великой Отечественной Войны транслирование было прервано, и восстановлено лишь после ее окончания. А в 1960 году появился и Второй канал.

Первый советский телевизор выпущенный промышленностью назывался Б-2. Эта механическая модель появилась в апреле 32 года. Первый же электронный телевизор был создан гораздо позже - в 1949 году. Это был легендарный КВН 49. Телевизор был оснащен столь маленьким экраном, что для более-менее комфортного просмотра перед ним устанавливалась специальная линза, которую нужно было наполнять дистиллированной водой. В дальнейшем появилось и множество других, более совершенных моделей. Впрочем, качество сборки и надежность советских телевизоров (даже самых поздних моделей) были настолько низкими, что стали притчей во языцех. Производство же цветных телевизоров, в СССР началось лишь в средине 1967 года.

Цветное телевидение

Хотя систему цветного телевидения разработал еще Зворыкин в 1928 году, лишь к 1950 году стало возможна ее реализация. Да и то лишь в качестве эксперементальных разработок. Прошло много лет, прежде чем эта технология стала общедоступной повсеместно.

Первый, пригодный к продаже цветной телевизор создала в 1954 году все та же RCA. Эта модель была оснащена 15 дюймовым экраном. Несколько позже были разработаны модели с диагоналями 19 и 21 дюйм. Стоили такие системы дороже тысячи долларов США, а следовательно, были доступны далеко не всем. Впрочем, при желании, была возможность приобрести эту технику в кредит. Из-за сложностей с повсеместной организацией цветного телевещания, цветные модели телевизоров не могли быстро вытеснить черно-белые, и долгое время оба типа производились параллельно. Единые стандарты (PAL и SECAM) появились и начали внедрятся в 1967 году.

Развитие телевидения

Стремительное развитие телевидения во второй половине 20-го века привело к тому, что уже выросло несколько поколений, не представляющих себе жизни без телевизора. Качество вещания значительно возросло и стало цифровым. Сами телевизоры уже перестали восприниматься как «ящики», ибо появились плоские LCD и плазменные модели. Размеры экрана перестали измеряться парой десятков сантиметров. Телевидение стало нормой.

В начале радиолампы были вытеснены полупроводниками – первый телевизор на основе полупроводников был разработан в 1960 году фирмой Sony. В дальнейшем появились модели на основе микросхем. Теперь же существуют системы, когда вся электронная начинка телевизора заключена в одну единственную микросхему.

Но рассказывая про историю телевидения, нельзя не упомянуть и еще одно относительно простое, но очень важно изобретение. Первый пульт дистанционного управления был создан в 1950 году. Этот пульт подключался к телевизору посредством длинного провода. Несколькими годами позже Роберт Адлер предложил использовать для этой цели ультразвук. Предпринималось также попытки использования луча видимого света. Но в итоге остановились на инфракрасном излучении, которое и используется до сих пор.

 

Лекция №5

 

Основы электродинамики

Электромагнитное поле

В 1860-1865 гг. один из величайших физиков XIX века Джеймс Клерк Максвелл создал теорию электромагнитного поля. Согласно Максвеллу явление электромагнитной индукции объясняется следующим образом. Если в некоторой точке пространства изменяется во времени магнитное поле, то там образуется и электрическое поле. Если же в поле находится замкнутый проводник, то электрическое поле вызывает в нем индукционный ток. Из теории Максвелла следует, что возможен и обратный процесс. Если в некоторой области пространства меняется во времени электрическое поле, то здесь же образуется и магнитное поле.

Таким образом, любое изменение со временем магнитного поля приводит к возникновению изменяющегося электрического поля, а всякое изменение со временем электрического поля порождает изменяющееся магнитное поле. Эти порождающие друг друга переменные электрические и магнитные поля образуют единое электромагнитное поле.

Принцип радиосвязи

Колебательный контур используют как источник электромагнитных волн. Для эффективного излучения контур "открывают", т.е. создают условия для того, чтобы поле "уходило" в пространство. Это устройство называется открытым колебательным контуром - антенной.

Радиосвязью называется передача информации с помощью электромагнитных волн, частоты которых находятся в диапазоне от   до  Гц.

 

Лекция №6  4. Основы радиосвязи

 

 

4.1. Понятие о радиотракте, его основные свойства

 

 

Для  передачи  по  радиотракту  сообщение  преобразовывается в первичный электрический сигнал. В зависимости от характера сообщения первичные сигналы могут быть непрерывными или дискретными.

Непрерывные сигналы принимают любые значения по состояниям в некотором интервале. Типичным примером непрерывных сигналов являются аудио- и видеосигналы телевидения: их амплитуда непрерывно меняется во времени в пределах ±Umах.

Дискретные сигналы принимают конечное число вполне определенных

 

значений по состоянию. Наиболее общим примером дискретных сигналов могут служить применяемые в цифровой технике сигналы с двумя уровнями - логическая единица и логический ноль.

Первичный электрический сигнал имеет низкочастотный характер: он может быть непосредственно переданным по проводным линиям связи, но не может эффективно излучать в среду распространение радиоволн, поскольку очень сложно создать излучатели, соизмеримые с длиной волны сигнала. Следовательно, для передачи по радио первичный сигнал должен быть преобразован в высокочастотный. С этой целью используются высокочастотные гармонические колебания, один или несколько параметров которых (амплитуда, частота или фаза) подвергаются модуляции, т.е. изменению, прямо пропорциональному значениям первичного сигнала. Модуляцию высокочастотных колебаний дискретными сигналами обычно называют манипуляцией.

Радиотракт образуется совокупностью технических средств и среды распространения радиоволн, по которой обеспечивается передача радиосигнала на расстояние. Радиотракт характеризуется некоторыми особенностями.

Во-первых, он  может  обладать  очень  большим  затуханием, достигающим нередко 140-160 дБ. Приемная аппаратура должна иметь коэффициент усиления не меньше 1010~~1014 по мощности и 105~107  по напряжению.

Во-вторых, затухание радиотракта оказывается переменным в широких пределах. Напряженность поля электромагнитной волны в точке приема обратно пропорциональна квадрату длины пути, совершенного ею. Поэтому изменение  уровня  сигнала  на  входе  приемной  части  радиотракта в результате изменения расстояния ведения радиосвязи может достигать 100 -

120 дБ. Большие изменения уровня сигнала наблюдаются при ведении радиосвязи между подвижными объектами, если используются ультракороткие волны, распространение которых существенно зависит от рельефа местности.

В-третьих, затухание радиотракта оказывается переменным в силу изменчивости параметров земной атмосферы. Это изменение наблюдается в большей  степени  в  диапазоне  коротких волн  при  ведении  связи отраженными от ионосферы волнами.

В-четвертых, среда распространения радиоволн является общей для всех существующих средств радиосвязи,  телерадиовещания, радионавигации и т.д. И это обстоятельство приводит к тому, что потребность в некоторых участках превышает их физическую емкость. Отсюда легко сделать вывод о неизбежности взаимных помех, источники которых могут быть природного или искусственного происхождения. Искусственные помехи могут быть и преднамеренного характера, особенно при ведении военных действий.

В-пятых, радиотракт вносит искажения в передаваемый сигнал из-за ограничения его спектра частот.

Итак, радиотракт (в отличие от проводного канала) характеризуется, с одной стороны, широким диапазоном медленных и быстрых изменений затухания, с другой - действием большого количества помех от внешних источников.


Для того, чтобы ограничить искажение сигналов, передаваемых по радиотракту, последний должен обладать определенными техническими характеристиками, связанными с видами передаваемых сигналов.

Рассмотрим основные из них:

 

Не обходимая полоса частот - это минимальная полоса частот данного класса радиоизлучения, достаточная для передачи сигнала с требуемой скоростью и качеством. Ширина этой полосы определяется шириной спектра передаваемого радиосигнала и учитывает возможную частотную нестабильность аппаратуры.

А мплитудно-частотная характеристика (АЧХ) - это зависимость амплитуды или уровня сигнала на выходе радиотракта от частоты входного синусоидального сигнала постоянной амплитуды или уровня. Эта характеристика отражает степень влияния радиотракта на амплитудные соотношения составляющих спектра радиосигнала.

Ф азочастотная характеристика (ФЧХ) - это зависимость сдвига по фазе между гармоническими колебаниями на выходе и входе радиотракта от частоты гармонических колебаний на его входе. Искажения отсутствуют, когда все составляющие спектра сигнала на выходе радиотракта запаздывают на одинаковое время.

А м плитудная характеристика (АХ) — это зависимость амплитуды (уровня) сигнала на выходе радиотракта от амплитуды (уровня) сигнала на его входе при неизменной частоте входного сигнала.

Все перечисленные характеристики определяются как аппаратурной частью радиотракта, так и частью, определяемой средой распространения радиоволн.

 

4.2. Те хника радиотракта и общие принципы его построения

 

Для передачи радиосигналов по радиотракту в пункте передачи необходимо иметь радиопередающее устройство, а в пункте приема - радиоприемное устройство.


Р а д иопередающее устройство - это техническое устройство, состоящее из радиопередатчика и антенно-фидерной системы и предназначенное для передачи сигнала.

Аналогичное определение можно дать и радиоприемному устройству. Передатчик выполняет три основные функции: во-первых, преобразует

первичный электрический сигнал в высокочастотный сигнал заданного вида, во-вторых, формирует частотный диапазон с заданным числом рабочих частот, и, в-третьих, сообщает радиосигналу заданную мощность за счет местного источника энергии.

Ф идер антенно-фидерного устройства обеспечивает передачу энергии сигнала в антенну, излучающую ее в заданном направлении.

Р а д иоприемное устройство включает в себя антенно-фидер-ное устройство и радиоприемник.

Приемная антенна принимает энергию электромагнитных волн, которая с помощью фидера подводится ко входу приемника.

В приемнике полезный сигнал отделяется от помех, усиливается, преобразуется в первичный электрический сигнал, необходимый для обеспечения работы оконечной аппаратуры.

Комплекс  аппаратуры,  предназначенный  для  ведения  радиосвязи  из

 

одного пункта, обычно называют радиостанцией (рис. В.1).

 

 


Передающа я часть око- нечного устройства


Передатчик                  АФУ


 

Среда распростра- нения


 

 


Приемная часть око- нечного устройства


Приемник                   АФУ


 

 

Рис. 4.1. Комплекс технических средств радиотракта


Для удобства рассмотрения эксплуатационных возможностей и принципов построения техники радиосвязи прибегают к классификационному делению их по наиболее характерным признакам.

Основные из этих признаков:

 

1. Назначение  -  определяет  область  их  возможного  применения  по дальности действия (ближняя - дальность связи составляет десятки километров, дальняя - от 10 и более километров).

2. Принцип  использования  -  автономные  и  централизованные радиостанции.

3. Мобильность - определяет степень подвижности средств радиосвязи. Радиостанции могут быть стационарными, т.е. являться оборудованием стационарных приемных и передающих радиоцентров, и подвижными - носимыми и возимыми, смонтированными в подвижных объектах.

4. Диапазон  частот  -  в  зависимости  от  используемого  частотного диапазона радиостанции могут быть ультракоротковолновыми, коротковолновыми, средневолновыми и т.д.

5. Виды радиосигналов - телеграф с различными видами манипуляции, телефон с различными видами модуляции, сигналы радио и телевизионного вещания, данные и др.

6. Режим  работы  -  симплексный  и  дуплексный  (симплексный  режим предполагает поочередную работу радиостанции на прием и передачу, дуплексный - одновременную (независимую)).

7. Мощность  передатчика  -  один  из  параметров  радиостанции, обеспечивающий определенную степень надежности ведения радиосвязи. Мощность передатчика выделяется из остальных параметров в силу того, что она определяет, в основном, мощность и тип первичного источника тока, габариты  радиостанции и  ее  мобильность.  Приемо-передающие радиостанции бывают малой, средней и большой мощности. Условно к маломощным радиостанциям относят радиостанции с мощностью передатчика до 100 Вт, к радиостанциям средней мощности от 100 Вт до 1


кВт и к радиостанциям большой мощности - свыше 1 кВт.

 

8. Степень  автоматизации  -  радиостанции  могут  быть  неавто- матизированными и автоматизированными. Некоторые современные радиостанции могут автоматически перестраиваться на заранее подготовленные частоты, другие - на любую частоту без предварительной подготовки, т.е. иметь различные степени автоматизации.

 

 

4.З. Распространение радиоволн различных частотных диапазонов

 

Радиоволны, излучаемые из точки передачи, могут распространяться в атмосфере, вдоль поверхности земли, в толще земли и в космосе. При этом различают следующие способы распространения радиоволн.

В однородной или слабо неоднородной среде радиоволны попадают в пункт приема по прямолинейным или близким к ним траекториям. Такие волны будут называться прямыми. Радиосвязь прямой волной (или прямым лучом) может осуществляться лишь при наличии прямой (или геометрической) видимости между антеннами корреспондентов. При расположении антенн  корреспондентов вблизи  земной  поверхности дальность прямой видимости ограничена сферичностью и неровностями рельефа земной поверхности и составляет несколько десятков километров. При радиосвязи на более значительные расстояния радиоволны попадают в пункт приема вследствие дифракции, рефракции, отражения и рассеяния радиоволн. Под дифракцией понимают способность волн искривлять свой путь  и  огибать  препятствие. Дифракция  волн  наблюдается  только  тогда, когда размеры препятствий одного порядка с длиной волны. Под рефракцией понимают искривление радиолуча  в  тропосфере  (одной  из  частей атмосферы) и отклонение его к земле, что ведет к увеличению дальности связи.


Если радиоволны распространяются вдоль земной поверхности, то на всем пути движения происходит поглощение энергии в полупроводящей земле. К этому добавляется ослабление волны из-за дифракции на выпуклости земли. Радиоволны, распространяющиеся вблизи земной поверхности и частично огибающие ее за счет дифракции, будем называть земными радиоволнами. Дальность связи земной волной измеряется сотнями километров и зависит от длины волны, мощности радиопередающего устройства, поляризации волны и электрических параметров поверхности земли.

Радиосвязь, осуществляемая на расстояния до и более 1000 км, может происходить при отражении волны от ионосферы (также составной части атмосферы) и земли. Ионосфера способна отражать радиоволны длиннее примерно 10 м. Радиоволны, распространяющиеся при отражении от ионосферы или рассеянии в ней, будем называть ионосферными волнами.

На распространение радиоволн короче 10 м существенное влияние оказывает тропосфера. Радиоволны, распространяющиеся на расстояния значительно большей дальности прямой видимости за счет рассеяния в тропосфере и ее направляющего действия, называются тропосферными. Практическое значение имеет распространение тропосферной волны на расстояния 600 - 1000 км.

Частоты электромагнитных колебаний, применяемых в современных устройствах радиосвязи, занимают столь обширную область, что условия их распространения существенно различаются. Поэтому радиоволны делят на ряд диапазонов по частотам так, что внутри каждого диапазона природные условия распространения остаются относительно однообразными (табл. В.1). Мириаметровые и километровые волны (СДВ и ДВ) могут распространяться и как земные, и как ионосферные. Наличие земной волны, распространяющейся на сотни и даже тысячи километров, объясняется тем, что напряженность поля этих волн убывает с расстоянием медленно, так как поглощение их энергии земной или водной поверхностью невелико. Глобальные  связи  на  СДВ  и  ДВ  осуществляются ионосферой  и  земной


поверхностью. СДВ и ДВ обладают свойством проникать в толщу воды, а также свойством распространения в некоторых структурах почвы. Исполь- зование этих волн для ведения связи несколько затруднено. Во-первых, геометрические размеры антенны должны быть соизмеримы с длиной волны, что не всегда выполнимо. Низкую эффективность антенн компенсируют мощностью передатчика (до 100 кВт и более). Во-вторых, рассматриваемые участки диапазона обладают самой низкой частотной емкостью. Практические области применения СДВ и ДВ - это связь с подводными объектами, связь по глобальным магистральным линиям и подземная связь.

Помехи, существенно влияющие на связь, отсутствуют.

 

Т а б л и ц а В. 1

 

 

№ п/п Наименование участка диапазона радиоволн Длина волны, м Наименование участка диапазона радиочастот Частота, кГц
1 Мириаметровые или сверхдлинные 10.000 100.000 Очень низкие частоты 3-30
2 Километровые или длинные 1000 10.000 Низкие частоты 30-300
3 Гектометровые или средние 100-1000 Средние частоты (3-30)-102
4 Декаметровые или короткие 10-100 Высокие частоты (3-30)-103
5 Метровые 1-10 Очень высокие частоты (3-30)104
6 Дециметровые 0,1-1 Ультравысокие частоты (3-30)-105

 

Гектометровые  или  средние  волны  (СВ)  испытывают большее поглощение при распространении вдоль земной поверхности, чем СДВ и ДВ. Поэтому дальность связи на СВ в дневное время летом всегда ограничена, так как она возможна лишь земной волной. В ночное время летом и в течение большей части суток зимой дальность связи, обеспечиваемой ионосферной волной, резко увеличивается. Антенные устройства для СВ имеют приемлемые габариты. Частотная емкость этого участка диапазона значительно выше, чем


СДВ и ДВ. Средневолновые радиостанции чаще всего применяются в арктических районах как резервные в случае потери связи на коротковолновом диапазоне. Участок СВ широко используется для работы радиовещательных станций.

Декаметровые волны (KB) занимают особое положение. Они могут распространяться и как земные, и как ионосферные волны. Земные волны при относительно небольших мощностях передатчиков мобильных радиостанций распространяются на расстояния, не превышающие нескольких десятков километров, так как они испытывают значительное поглощение в земле. Ионосферные волны из-за многократного отражения от ионосферы при благоприятных условиях могут распространяться на сколь угодно большие расстояния. Частотная вместимость КВ-диапазона значительно больше, чем предшествующих диапазонов, что обеспечивает возможность одновременной работы большого числа радиостанций. Антенны KB радиостанций при относительно небольших габаритах достаточно эффективны. Существенное снижение качества КВ-радиосвязи ионосферными волнами происходит из-за замирания сигналов. Природа замираний в основном сводится к интерференции нескольких приходящих к месту приема по разным траекториям лучей. Существуют и другие причины появления нескольких лучей в точке приема.

Многолучевость в сочетании с флуктуациями параметров ионосферы приводит к тому, что характеристики результирующего поля сигнала в месте приема непрерывно меняются и прием коротких волн сопровождается быстрыми (0,1 - 1 с) и медленными изменениями уровня сигнала на входе приемника - замираниями.

Несмотря на целый ряд причин, приводящих к неустойчивости радиосвязи, она находит широкое применение из-за возможности организации прямой связи на трассах различной протяженности при малых энергетических затратах.

Ультракороткие волны включают в себя ряд участков частотного диапазона, обладающих огромной частотной емкостью. Энергия УКВ сильно


поглощается землей, поэтому земная волна довольно быстро затухает. Для УКВ не свойственно регулярное отражение от ионосферы, следовательно, можно рассчитывать на использование земной волны и волны, распространяющейся в свободном пространстве. Дальность связи поверхностными волнами УКВ диапазона невелика не только в силу большого поглощения их энергии, но и потому что эти волны не обладают выраженными свойствами дифракции, т.е. свойствами огибать неровности рельефа местности.

Поглощение энергии УКВ в земле компенсируется повышением эффективности антенн, так как их размеры становятся того же порядка, что и длина волны. Поэтому при наличии геометрической видимости между пунктами связь может поддерживаться при относительно малой мощности радиостанций. УКВ-диапазон обладает наибольшей частотной емкостью и может использоваться одновременно очень большим числом радиостанций, тем более что дальность взаимного влияния между ними невелика.

Пониженный уровень помех в УКВ-диапазоне позволяет иметь высококачественные каналы передачи информации. Исключительное значение приобретают ультракороткие волны для связи в свободном пространстве между подвижными объектами и в системах

 

Лекция № 7
















Материалы

 

Стеклянные оптические волокна делаются из кварцевого стекла, но для дальнего инфракрасного диапазона могут использоваться другие материалы, такие как флуоро-цирконат, флуоро-алюминат и халькогенидные стекла. Как и другие стекла, эти имеют показатель преломления около 1,5.

В настоящее время развивается применение пластиковых оптических волокон (Plastic optical fibers).

 

История

У истоков светопередачи

Свет как средство передачи информации, например в виде сигнальных костров, использовался уже в древних цивилизациях. Подобные примеры существуют и в наши дни в использовании маяков, светофоров, фар автомобилей. 200 лет назад человечество начало разрабатывать методы передачи информации на расстояния с помощью света. Так, во Франции около 1790 г. Клод Шапп смастерил первую систему оптического телеграфа, которая включала в себя цепь семафорных башен с подвижными сигнальными рейками. Информация, передаваемая по ней за 15 минут доходила на расстояние 200 км. Система устарела только после изобретения электрического телеграфа.

В Америке в 1880 г. Александром Беллом был изобретен фотофон. Речь здесь передавалась с помощью света. От этого изобретения пришлось отказаться, из за влияния погодных условий на качество работы.

Физик из Великобритании Джон Тиндаль в свою очередь показал, что свет может передаваться в потоке воды. Он использовал принцип внутреннего отражения света, который успешно применяется в современных оптических шнурах.

 

 

Новая эпоха оптоволокна

В 1934 г. американец Норман Френч запатентовал первую оптическую телефонную систему. В ней речевые сигналы передавались с помощью оптического кабеля, который должен был быть из чистого стекла или похожего материала, имеющего небольшой коэффициент затухания. Реализована эта концепция лишь спустя два с половиной десятилетия, когда был найден подходящий передатчик - источник света. В 1958 г. лауреатами Нобелевской премии был разработан лазер, который впервые заработал в 1960 г.

Проблема изготовления лазеров из полупроводниковых материалов решена в 1962 г. Тогда же появляется приемник в виде полупроводниковых фотодиодов. Оставалось найти подходящую передающую среду.

Ученые пробовали передавать свет по полому световоду, имеющему зеркальные края и системы специальных линз. Англичане Чарльз Као и Джордж Хокем в 1966 г. предложили стекловолокно в качестве среды для передачи света. Однако, чтобы система связи была эффективной, необходимо было, чтобы волокно имело коэффициент затухания не более 20 дБ/км. Потери в современных видах кабеля составляли около 1000 дБ/км. Тем не менее в сфере медицинских технологий уже в 50х были внедрены световоды, передающие изображения на короткие расстояния.

В 1970 г. компания "Corning inc." создала оптические волокна с коэффициентом затухания < 20 дБ/км при длине волны 633 нм. В 1972 г. удалось добиться затухания 4 дБ/км. Современные одномодовые волокна при длине волны 1550 нм. имеют коэффициент затухания 0,2 дБ/км. Передатчики и приемники в свою очередь значительно усовершенствованы, увеличена их мощность, чувствительность, а также их срок эксплуатации.

 

Современные технологии

Первые виды оптического кабеля начали эксплуатироваться в телефонной связи на кораблях ВМФ США в 1973 г. Компания "Bell systems" впервые испытала работу оптического кабеля длиной более 3 км, а фирма "General Telephone" - оптического кабеля длиной более 9 км. Корпорация "Siecor Corp." - совместное предприятие "Siemens AG" и "Corning Inc", была первым поставщиком одномодового оптического кабеля для телефонной компании в Нью-Йорке в сентябре 1983 г. Первое подводное оптоволокно было успешно проложено через Атлантический океан в 1988 г.

Первая полноценная волоконно-оптическая линия связи для "Deutsche Telekom AG" была построена АО "Siemens" в 1977 г. Со следующего года весь мир начал применять новую технологию с использованием многомодового оптического кабеля. В наши дни ежегодно прокладывается более 7 миллионов километров одномодового оптического кабеля.

 

Классификация


Чаще всего волокна подразделяют на 2 общих типа волокон:

1. Многомодовые волокна

2. Одномодовые

 

Дадим пояснение на «бытовом» уровне что есть одномод и многомод.
Представим гипотетическую систему передачи с волокном воткнутым в нее.

Нам надо передать двоичную информацию. Импульсы электричества в волокне не распространяются, ибо диэлектрик, поэтому мы будим передавать энергию света.

Для этого нам нужен источник световой энергии. Это могут быть светодиоды и лазеры.

Теперь мы знаем что мы используем в качестве передатчика — это свет.

Подумаем как свет вводится в волокно:

1) Световое излучение имеет свой спектр, поэтому если сердцевина волокна широкая (это в многомодовом волокне), то больше спектральных составляющих света попадет в сердцевину.

Например мы передаем свет на длине волны 1300нм (к примеру), сердцевина многомода широкая, то и путей распространения у волн больше. Каждый такой путь и есть моды.

 

2) Если же сердцевина маленькая (одномодовое волокно), то путей распространения волн соответственно уменьшается. И так как дополнительных мод гораздо меньше, то и не будет и модовой дисперсии (о ней ниже).

 

Это основное отличие многомодового и одномодового волокон.

 

Многомодовые в свою очередь делятся на волокна со ступенчатым показателем преломления (step index multi mode fiber) и с градиентным (graded index multi mode fiber).

Одномодовые делятся на ступенчатые, стандартные (standard fiber), со смещенной дисперсией (dispersion-shifted) и ненулевой смещенной дисперсией (non-zero dispersion-shifted)

 



Оптические кабели связи

 

Оптический кабель связи состоит из скрученных по определенной системе оптических волокон из кварцевого стекла, которые находятся в отдельной оболочке.

 

В оптических кабелях применяется оптоволокно следующих типов:

· Ступенчатое, диаметр сердцевины которого составляет 50 мкм;

· Градиентное, которое имеет параболический профиль показателя преломления сердцевины;

· Одномодовое, которое имеет тонкую сердцевину.

 

Лучшим по частотно-пропускной способности и дальности передачи являются одномодовое оптоволокно, худшим – ступенчатое.

 

 

Таблица заполняемая автоматически ПО рефлектометра.

 

Наиболее значимыми параметрами являются:

· длина волны, соответствует выбранному окну прозрачности. Для одномодового 1550 и 1310 нм, для многомода 1300 и 850 нм.

· коэффициент преломления. Во многом аналогичен коэффициенту укорочения при измерении медного кабеля. Влияет на точность измерения расстояния. При монтаже и приёмо-сдаточных измерениях берётся из паспортов барабанов, а при плановых из паспорта трассы. Как правило вся документация по оптоволокну ведётся аккуратно и «липа» встречается редко.

Оптические рефлектометры могут быть выполнены, как цельным прибором, имеющим всё «на борту», так и работающими в паре с компьютером. Те у которых «всё в одном» более удобны для работы и компактнее, но стоят дороже. Зато, на работающих в паре с ПК можно веселее провести время (всё таки полноценный компьютер с собой).

В настоящее время некоторые модели запросто умещаются в кармане. Все оптические рефлектометры имеют возможности для записи и передачи данных на цифровые носители.

 

Граница оптики и меди

В семейство FTTx входят различные виды архитектур:

· FTTN (Fiber to the Node) — волокно до сетевого узла (развитие в конце прошлого века, с появлением оптического кабеля);

· FTTC (Fiber to the Curb) — волокно до микрорайона, квартала или группы домов (использовалось при строительстве небольших выносов малой емкости, распространение до 2007 года);

· FTTB (Fiber to the Building) — волокно до здания (начиная с 2007 года с появлением бюджетных коммутаторов);

· FTTH (Fiber to the Home) — волокно до жилища (квартиры или отдельного коттеджа). Самая прогрессивная технология.

Они отличаются главным образом тем, насколько близко к пользовательскому терминалу подходит оптический кабель.

 

FTTN и FTTC

Исторически первыми появились решения FTTN и FTTC.

На сегодняшний день FTTN используется в основном как бюджетное и быстро внедряемое решение там, где существует распределительная «медная» инфраструктура и прокладка оптоволокна нерентабельна. Всем известны связанные с этим решением трудности: невысокое качество предоставляемых услуг, обусловленное специфическими проблемами лежащих в канализации медных кабелей, существенное ограничение по скорости и количеству подключений в одном кабеле.

FTTC — это улучшенный вариант FTTN, лишённый части присущих последнему недостатков. В случае с FTTC в основном используются медные кабели, проложенные внутри зданий, которые, как правило, не подвержены проблемам, связанным с попаданием воды в телефонную канализацию, с большой протяженностью линии и качеством используемых медных жил, что позволяет добиться более высокой скорости передачи на медном участке.

FTTC в первую очередь предназначена для операторов, уже использующих технологии xDSL или PON, и операторов кабельного телевидения: реализация этой архитектуры позволит им с меньшими затратами увеличить и число обслуживаемых пользователей, и выделяемую каждому из них полосу пропускания. В России этот тип подключения часто применяется небольшими операторами Ethernet-сетей. Связано это с более низкой стоимостью медных решений и с тем, что монтаж оптического кабеля требует высокой квалификации исполнителя.

Очевидно, что запланированный набор услуг и необходимая для их предоставления полоса пропускания имеют самое непосредственное влияние на выбор технологии FTTx. Чем выше скорость доступа и чем больше набор услуг, тем ближе к терминалу должна подходить оптика, а именно нужно использовать технологии FTTH. Если же приоритетом является сохранение имеющейся инфраструктуры и оборудования, наилучшим выбором будет FTTB.

 

FTTB

Архитектура FTTB получила наибольшее распространение, так как при строительстве сетей FTTx на базе Ethernet (ЕТТх) часто это единственная технически возможная схема. Кроме этого, в структуре затрат на создание сети FТТх разница между вариантами FTTC и FTTB относительно небольшая, при этом операционные расходы при эксплуатации сети FTTB ниже, а пропускная способность выше. Архитектура FTTB доминирует во вновь возводимых домах и у крупных операторов связи. В первую очередь это связано с существенно более высокой стоимостью ее реализации по сравнению со стоимостью сети FTTC/FTTB, отсутствием преимуществ в полосе пропускания для пользователя.

 

FTTH

Однозначно в пользу решений FTTH выступают эксперты компании Motorola. Дальнейшая модификацией выступает ftth gpon (Gigabit PON), PON в свою очередь означает "пассивная оптическая сеть". Компания Motorola сравнивает продолжительность жизненного цикла инвестиций в любую технологию доступа и коррелированный рост требований к пропускной способности каналов доступа. Проведенный анализ показывает, что если технические решения, которые закладываются в основу сегмента доступа сети сегодня, окажутся неспособными обеспечить скорость 100 Мбит/с в 2013—2015 годах, то моральное устаревание оборудования произойдет до окончания инвестиционного цикла. Оператор должен обязательно учитывать эти данные, иначе он рискует оказаться уязвимым перед лицом конкурентов по мере стремления пользователей к получению услуг все более высокого класса.

Эксперты компании Alcatel-Lucent перечисляют следующие преимущества архитектуры FTTH:

· из всех вариантов FTTx она обеспечивает наибольшую полосу пропускания;

· это полностью стандартизированный и наиболее перспективный вариант;

· решения FTTH обеспечивают массовое обслуживание абонентов на расстоянии до 20 км от узла связи;

· они позволяют существенно сократить эксплуатационные расходы — за счет уменьшения площади технических помещений (необходимых для размещения оборудования), снижения энергопотребления и собственно затрат на техническую поддержку.

 

Волоконно-оптическая связь

Основное применение оптические волокна находят в качестве среды передачи на волоконно-оптических телекоммуникационных сетях различных уровней: от межконтинентальных магистралей до домашних компьютерных сетей. Применение оптических волокон для линий связи обусловлено тем, что оптическое волокно обеспечивает высокую защищенность от несанкционированного доступа, низкое затухание сигнала при передаче информации на большие расстояния и возможность оперировать с чрезвычайно высокими скоростями передачи. Уже к 2006-му году была достигнута скорость модуляции 111 ГГц, в то время как скорости 10 и 40 Гбит/с стали уже стандартными скоростями передачи по одному каналу оптического волокна. При этом каждое волокно, используя технологию спектрального уплотнения каналов может передавать до нескольких сотен каналов одновременно, обеспечивая общую скорость передачи информации, исчисляемую терабитами в секунду.

2.2.2

Волоконно-оптический датчик

Оптическое волокно может быть использовано как датчик для измерения напряжения, температуры, давления и других параметров. Малый размер и фактическое отсутствие необходимости в электрической энергии, даёт волоконно-оптическим датчикам преимущество перед традиционными электрическими в определённых областях.

Оптическое волокно используется в гидрофонах в сейсмических или гидролокационных приборах. Созданы системы с гидрофонами, в которых на волоконный кабель приходится более 100 датчиков. Системы с гидрофоновым датчиком используются в нефтедобывающей промышленности, а также флотом некоторых стран. Немецкая компания Sennheiser разработала лазерный микроскоп, работающий с лазером и оптическим волокном.

Волоконно-оптические датчики, измеряющие температуры и давления, разработаны для измерений в нефтяных скважинах. Они хорошо подходят для такой среды, работая при температурах, слишком высоких для полупроводниковых датчиков.

Разработаны устройства дуговой защиты с волоконно-оптическими датчиками, основными преимуществами которых перед традиционными устройствами дуговой защиты являются: высокое быстродействие, нечувствительность к электромагнитным помехам, гибкость и лёгкость монтажа, диэлектрические свойства.

Оптическое волокно применяется в лазерном гироскопе, используемом в Boeing 767 и в некоторых моделях машин (для навигации). Специальные оптические волокна используются в интерферометрических датчиках магнитного поля и электрического тока. Это волокна, полученные при вращении заготовки с сильным встроенным двойным лучепреломлением.

 

ВОПРОСЫ

 

1) Что изучает волоконная оптика? История развития волоконной оптики.

2) Классификация, конструкция и основные параметры оптического волокна.

3) Оптические кабели связи. Классификация, конструкция.

4) Способы соединения оптических волокон.

5) Измерения на оптическом волокне. Устройства и виды измерений.

6) Сети FTTx. Виды, особенности каждого вида. Степень развития на данный момент.

7) Основные применения оптического волокна.

 

 

Введение


    Уже минул век, с тех пор как было изобретено радио. Свыше ста лет ведутся споры по установлению авторства этого изобретения. У нас бытует мнение, что радио изобрел известный российский ученый Попов, на Западе – что это был итальянец Маркони. Мы не будем пытаться установить историческую истину, тем более что так ли это теперь важно. Важно то, что мир получил уникальнейшее средство коммуникации.

Во многом именно благодаря изобретению и развитию радио произошел технический прорыв во многих областях науки и техники, связанных с обменом и обработкой информации. Радио послужило мощнейшим стимулом в исследовании и развитии электричества, стало основой электроники. Электроника, в свою очередь, позволила создать устройства неотъемлемо связанные с приемом и передачей информации, с управлением технологическими процессами, с измерениями и контролем. Именно в процессе развития радио были заложены основные принципы электронной обработки сигналов и вычислительной техники. Компьютеры и калькуляторы, локаторы и радиотелескопы, бытовые микроволновые печи и магнитофоны, роботы и космические станции, электронные часы и сердечные стимуляторы… и еще множество других электронных приборов и устройств могут считаться потомками первой системы «регистрации грозовых разрядов» Попова и радиоприемника Маркони.

    Только перечисление всех областей, где используется радио, заняло бы, пожалуй, не одну сотню страниц. Сегодня уже ни кого не удивляет возможность обмена информацией с любой точкой нашей планеты посредством радиоволн, а радиоприемники, телевизоры и портативные радиостанции стали настолько же привычны, как кино, автомобили и самолеты.

    Технический прогресс не перестает поражать темпами развития. Лишь вчера не сходившие с газетных передовиц и сенсационных обзоров изобретения и открытия сегодня уже перешли в разряд обыденных. Цифровые радиорелейные линии, беспроводные и сотовые телефоны, системы спутникового радио- и телевизионного вещания, дистанционное управление межпланетными космическими станциями, радиоастрономия, спутниковая навигация GPS…

 

    Промозглый декабрь 1821 года. Туманный Альбион. Лаборатория в мерцающем свете свечей. В своем дневнике пятидесятилетний Майкл записывает задачу: «превратить магнетизм в электричество». За 10 лет напряженного труда он осуществил «превращение». Скрипит перо, выводя строки очередной победы человеческого разума над тайнами Природы. 24 декабря 1831 была поставлена последняя точка в первой серии знаменитой книги «Экспериментальные исследования по электричеству».

Майкл Фарадей своим открытием явления электромагнитной индукции (порождение электрического поля переменным магнитным полем) заложил фундамент современной электротехники.

Шли годы. Были открыты законы взаимодействия неподвижных электрических зарядов (закон Кулона) и токов (закон Ампера). Установлено, что магнитные влияния есть взаимодействия движущихся электрических зарядов. Уже прозвучал термин «мировой эфир» – гипотетическая среда, через которую протянуты невидимые «упругие линии» магнитного и электрического взаимодействия. И вот новое событие!

В 1864 профессор экспериментальной физики в Кембридже Джеймс Клерк Максвелл математически доказал, что любое электрическое волнение может производить эффект на значительном расстоянии от точки где оно произошло и предсказал, что электромагнитная энергия может передаваться в направлении от источника в виде волн, перемещающихся со скоростью света (300 000 км/сек). К 1869 все основные закономерности поведения электромагнитного поля были установлены и сформулированы в виде системы четырех уравнений, получивших название «уравнения Максвелла».

Увы, но во времена Максвелла, еще не существовало средств порождения или обнаружения электромагнитных волн. Предсказания Максвелла о существовании электромагнитного поля показались современникам бесполезными. И только после того, как Генрих Герц в 1886–89 экспериментально доказал существование электромагнитных волн, почти через десять лет после смерти Максвелла, человечество задумалось о возможности их применения

Для проведения опытов с радиоволнами немецкий физик Генрих Рудольф Герц использовал разрядник (два электрода, разделенные воздушным зазором), установленный в центре параболического металлического отражателя. Металлическое кольцо с намотанной на нем катушкой подключалось к другому разряднику, идентичному первому. Искра, возникающая в первом разряднике, вызывала возникновение меньшей искры в зазоре второго. Таким образом, Герц доказал, что предсказания Максвелла были верны, по крайней мере, на коротких расстояниях. Было установлено, что электромагнитные волны распространялись прямолинейно и могли отражаться от металлических листов так же, как световые волны отражаются зеркалом.

Были открыты и экспериментально доказаны основные принципы, лежащие в основе передачи электромагнитной энергии на расстоянии. Осталось совсем немного – создать устройство способное к этому.

Идея по созданию радиоприемника материализовалась 7 мая, 1895 на заседании Русского физико-химического общества в Санкт-Петербургском университете.

В энциклопедии «Британика» («Britannica.com Inc.») сказано: «…Александр Степанович Попов, физик и инженер-электрик, считающийся в России изобретателем радио. Очевидно, что он создал первый примитивный радиоприемник – датчик молний (1895), независимо и без знания о современных работах итальянского изобретателя Гульельмо Маркони. Подлинность и значение успешных экспериментов Попова не подвергаются сомнению, но обычно признается приоритет Маркони».

В своих экспериментах Маркони подсоединял один из электродов разрядника к вертикально подвешенному проводу (играющему роль антенны), а другой электрод к земле (заземление). На приемной стороне системы использовалось аналогичное устройство. Расстояние между передатчиком и приемником постепенно увеличивалось: сначала до 300 ярдов (275 м), затем до 2-х миль (3 км), далее через Английский Канал (пролив Ла-Манш). Наконец в 1901 году Маркони «перебросил мост» через Атлантику, «связав» континенты. Знак «S» переданный азбукой Морзе пролетел сквозь пространство между местечком Полду на полуострове Корнуолл (Великобритания) и городом Сент-Джонс на полуострове Ньюфаундленд (Канада) преодолев со скоростью света расстояние почти 2 100 миль (3 500 км).


Радиосвязь как таковая

 

       К середине 90-х годов XIX века уже существовали основные элементы, требующиеся для практической реализации системы передачи сигналов посредством электромагнитных волн: катушка Румкорфа, вибратор Герца, когерер Лоджа. Над реализацией системы передачи работало множество исследователей. Однако только Попов и Маркони осуществили первые попытки увеличить расстояние между передатчиком и приемником, постепенно усовершенствуя разрядник и когерер и повышая эффективность системы с помощью антенны и заземления.

В 1899 П. Н. Рыбкин и Д. С. Троицкий – помощники Попова – обнаружили детекторный эффект когерера. На основе этого эффекта Попов построил «телефонный приёмник депеш» для слухового приёма радиосигналов (на головные телефоны) и запатентовал его (Русская привилегия № 6066 от 1901). Приёмники этого типа выпускались в 1899–1904 в России и во Франции (фирма «Дюкрете») и широко использовались для радиосвязи. В начале 1900 приборы Попова были применены для связи во время работ по ликвидации аварии броненосца «Генерал-адмирал Апраксин» у острова Гогланд и при спасении рыбаков, унесенных на льдине в море. При этом дальность связи достигла 45 км. В 1901 Попов в реальных корабельных условиях получил дальность связи 148–150 км.

Сильный ветер сорвал полотна огромных антенн, которые он построил в Англии. Сильный ветер сломал его мачты на другой стороне Атлантики в Ньюфаундленде, задержав эксперименты. Тогда было решено устанавливать антенны не на опорах, а поднимать на воздушных шарах и гигантских воздушных змеях. Но штормовой ветер разгадал и эту хитрость Маркони: его воздушные шары и три из четырех змеев были унесены. Но, несмотря на капризы погоды, в относительно безветренный день 12 декабря 1901 года Маркони все-таки услышал слабые сигналы с другой стороны Атлантики: точка, еще точка и опять точка… – символ «S» кода Морзе. Вряд ли в хронологии радио был более важный день или более важное свершение.

В октябре 1899 он отправился в США для обеспечения радиосвязью регаты на Кубок Америки, благодаря чему был удостоен долгожданного внимания прессы.

Командование американского флота пригласило его на демонстрацию радиотелеграфной связи между крейсером «Нью-Йорк» и линкором «Массачусетс» на расстояние около 35 миль (65 км). Все прошло удачно. Флот был поражен и увлечен. Сразу же было выражено желание установить беспроводные системы на все суда, теплоходы, патрульные катера и лодки. Но имелась одна маленькая проблема…

Один из офицеров сетовал: «Когда работает один передатчик, то все принимают. Но когда работают два передатчика одновременно, то в приемнике одновременно слышны оба сообщения. Мы не можем разобрать ни одно из них. Как вы предлагаете решить это, мистер Маркони?» Маркони не задумываясь, ответил, что оставил необходимое оборудование в Англии и обещал показать его в следующий приезд. Он блефовал. У него не было оборудования, чтобы «распутать» электромагнитный беспорядок. Но он был уверен, что создаст его. Если бы он мог заставить передающую станцию излучать только определенную волну и настроить на нее приемник…

По возвращению в Англию Маркони приглашает на работу наиболее известного мастера электроники Джона Флеминга. И уже в 1900 Маркони получает патент №7777 на «Oscillating Sintonic Circuit» – систему настройки. «Чтобы обеспечить установление четкой связи с одной или более передающих станций одному или нескольким приемникам».

Заслуга Маркони прежде всего в том, что он был «человеком системы», первым, кто успешно объединил чужие практические и теоретические изыскания в области беспроводной связи в бизнес.

Английский инженер Джон Флеминг внес значительный вклад в развитие электроники, фотометрии, электрические измерения и радиотелеграфную связь. Наиболее известно его изобретение радио детектора (выпрямителя) с двумя электродами, которое он назвал термоэлектронной лампой, также известной как вакуумный диод, кенотрон, электронная лампа и лампа или диод Флеминга.

Это устройство, запатентованное в 1904, стало первым электронным детектором радиоволн, преобразующим радиосигналы переменного тока в постоянный ток. Открытие Флеминга было первым шагом в эпоху ламповой электронной техники. Эпохи, которая продлилась без малого до конца XX века.

 

«Поющая дуга»

 

В 1900 уличные фонари в Лондоне, как и повсюду в Европе, были уже электрическими.

Это было время электродуговых угольных ламп (непрерывной электрической искры), но у них имелся неприятный недостаток – раздражающий, свистящий звук, издаваемый при горении. (Оказывается проблеме шума осветительных приборов уже более 100 лет. В частности, «свист» ламп дневного света в наше время также не доставляет радости.)

В 1903 Поулсен запатентовал «улучшенный дуговой генератор колебаний, использующий углеводородную атмосферу и магнитное поле» и первым предложил последовательное соединение дуговых ламп. В частности, улучшенная модификация генератора использовалась компанией «Telefunken». Построенная ею система в 1906 охватила 25 миль: «дуговые передатчики подключались последовательно по 6 генераторов при питании 220 В постоянного тока, по 12 при 440 В или по 24 при 880 В».

 

 

       Первые телеграфные радиосистемы обходились искровыми передатчиками, для передачи же голоса требовались незатухающие колебания. Дуга Поулсена обеспечивала именно незатухающие колебания.

 

Реализации


    В 1906 телеграфные операторы были очень удивлены, услышав среди атмосферных помех и «морзянки» звуки человеческого голоса. Первые удачные опыты вдохновили исследователей. Создание беспроводного телефона стало идеей фикс для множества ученых и изобретателей. Дальнейшее развитие радио разделилось на два направления. Радио – как средство коммуникаций и радио – как средство массовой информации и развлечения.

 

Одной из наиболее важных личностей в первом двадцатилетии развития радио как коммерческой связи, и радио как развлекательного вещания был Ли де Форест.

Наибольшую известность де Форест получил за изобретение 3-х электродной электронной вакуумной лампы.

В 1906 Форест добавил в диод Флеминга управляющий электрод – сетку. Новая лампа получила название «аудион» (в последующем известна как триод) и нашла важное применение в качестве усилителя сигналов.

 

    Эдвин Говард Армстронг, американский изобретатель и инженер-электрик, внес фундаментальный вклад в развитие радио. Изобрел регенеративную схему (обратную связь), супергетеродинный приемник, частотную модуляцию (ЧМ). Армстронг был отцом ЧМ радио, дедушкой радара и прадедушкой космической связи, но никогда не пожинал плодов своего гения.

Армстронг не изобрел радио. Это заслуга принадлежит Попову и Маркони. Но в 1912, в возрасте 22 лет, Армстронг выяснил, как работает электронная лампа де Фореста и использовал ее в необычном виде. Он взял электрический сигнал, полученный с выхода усилительной лампы, и подал его обратно на вход. И так снова и снова, каждый раз увеличивая мощность.

Он назвал это явление «регенерацией». Это был очень важный вклад в развитие радио, потому что, когда обратная связь была увеличена выше критического уровня, то электронная лампа продолжала колебания, которые создавали собственные радиоволны. Это было не только усиление радиосигналов, но и их генерация. Армстронг установил аудион Фореста и в приемник, и в передатчик. Это небольшое с виду новшество позволило избавиться от 20-тонных генераторов.

Армстронг изобрел устройство, названное странным словом «супергетеродинный приемник». Сложный продукт электронного колдовства, которое и сейчас является основным принципом практически всех радиоприемников, телевизоров и радаров.

Армстронг продолжал изобретать. Он начал работы над уменьшением статических помех, экспериментируя с тем, что позже станет известным как частотная модуляция.

Сигналы ЧМ не смешивались друг с другом, ЧМ радио просто принимало более сильный сигнал. Это подразумевало, что множество маломощных станций могло работать вблизи друг друга и использовать малую часть электромагнитного спектра.

 

Транзистор

 

       В 1956 американские физики Вильям Брэдфорд Шокли, Джон Бадин и Уолтер Брэттен были совместно удостоены Нобелевской премии в области физики за изобретение транзистора.

Слово «транзистор» возникло из сокращения двух английских слов: «transfer» – перемещать, переносить и «resistor» – резистор, сопротивление.

Транзистор произвел революцию в технологии радио. Он дал начало новому направлению – микроэлектронике и, в конечном итоге, привел к созданию микросхем, микропроцессоров, компьютеров и многих других устройств без которых мы в настоящее время не мыслим свою жизнь. Это был выход из «первобытного» века в век электронный, космический и компьютерный.

«Пластмассовая пластинка треугольной формы, обернутая золотой фольгой и охватывающая небольшой кусочек германия, который имеет электрический контакт в основании».

Это было примитивное устройство, но оно оказалось намного более эффективным по сравнению с электронной лампой. Оно позволяло пропускать и не пропускать ток и, кроме того, усиливать его.

Еще в 1939 Шокли предложил прообраз полевого транзистора, в котором использовались проводники, вставленные в оксид меди. Его устройство не было практически реализовано (изобретено в начале 60-х другими учеными), но полевой эффект стал основой будущих интегральных схем. Тогда же Шокли высказал предположение, что приборы, работающие на «полевом» принципе, смогут заменить механические и ламповые коммутаторы в телефонных станциях.

Даллас, штат Техас, 10 октября 2000.

 

       Компания «Texas Instruments» комментирует награждение Нобелевской премией в области физики Джека Килби, бывшего директора отдела технологических разработок «TI». Так отмечен его «вклад в изобретение интегральной схемы» (микросхемы), устройства, обычно называемого «чипом»…

Премия была разделена между Килби (1/2), российским физиком Жоресом Алферовым (1/4) и немецким ученым Гербертом Кроемом (Herbert Kroeme) (1/4). К сожалению, в российской периодике, не упоминалось имени человека, положившего начало современной микроэлектроники.

Это примитивное устройство – один транзистор и несколько пассивных компонентов на кусочке германия – Килби продемонстрировал горстке сотрудников, собравшихся в лаборатории полупроводниковой техники компании «Texas Instruments» почти пол века назад. Никто из присутствующих не предполагал, что «гадкий утенок» размером 11.1х1.6 мм, названный интегральной схемой (ИС) полностью преобразует электронную промышленность.

 

 

Лекция № 4


История создания телевидения.

Телевидение (греч. τήλε — далеко и лат. video — вижу) — система связи для трансляции и приёма движущегося изображения и звука на расстоянии.

Телевидение основано на принципе последовательной передачи элементов кадра с помощью развёртки. Частота смены кадров выбирается, в основном, по критерию плавности передачи движения. Для сужения полосы частот передачи применяют чересстрочную развертку, она позволяет вдвое увеличить частоту кадров (а значит, увеличить плавность передачи движущихся объектов).

Телевизионный тракт (от света до света) в общем виде включает в себя следующие устройства:

Видеокамера. Объектив проецирует изображение на светочувствительную поверхность. Схема развертки по строчкам считывает яркость элементов изображения. Сначала передаются нечётные строки (1-е поле), затем чётные (2-е поле). Информация о цвете передаётся на поднесущей частоте. Так формируется кадр полного цветного телевизионного сигнала (ПЦТС). Для съёмки и передачи документов применяются специализированные документ-камеры.

Видеомагнитофон (не обязательно). Записывает и в нужный момент воспроизводит чередование строк и полей.

Передатчик. Сигнал радиочастоты модулируется телевизионным сигналом и излучается в эфир (возможна трансляция по кабелю). Звук передаётся на отдельной частоте обычно при помощи частотной модуляции.

Приёмник — телевизор. С помощью синхроимпульсов содержащихся в ПЦТС телевизионный кадр разворачивается на экране (кинескоп, ЖК панель, плазменная панель).

Стандартом телевизионного вещания принято называть совокупность числа строк разложения кадра, частоту смены кадров или полей и наличие чересстрочности. Уже несколько десятилетий в мире преобладают три стандарта с чересстрочной разверткой:

625 строк, 50 полей в секунду в Европе (PAL)

525 строк, 59,94 полей в секунду в Америке и Японии (NTSC)

625 строк, 50 полей в секунду во Франции, России, Китае и некоторых странах Ближнего Востока (SECAM)

 

Сейчас им на смену приходит телевидение высокой четкости (ТВЧ). Есть два стандарта, они могут иметь чересстрочную (i — interlace) или построчную (p — progressive) развёртку и частоту кадров 24, 25, или 30 в секунду.

    720/50i;60i;30p;25p;24p

1080/50i;60i;30p;25p;24p

Под системой телевидения понимают способ кодирования информации о цвете. Имеется три системы (в порядке разработки):

NTSC

PAL

SÉCAM

Долгое время люди мечтали о возможности передачи изображения и звука на расстояние. Одной из важной и первой вехой на пути развития телевидения или, как его тогда называли, радиовидения можно считать выделение в 1817 г селена шведским химиком Йенсом Якобом Берцелиусом [1779-1848], открытое в 1873 г американским ученым У.Смитом явление внутреннего фотоэффекта (впоследствии был использован при создании видикона) и установление в 1888 г русским физиком Александром Григорьевичем Столетовым [1839-1896] основных закономерностей внешнего фотоэффекта (впоследствии был использован при создании суперортиконов). Попытки передать изображение на расстояние при помощи электричества относится к 1876 г, когда Александр Грэхем Белл изобрел телефон. К этому времени было уже известно, что сопротивление селена изменяется в зависимости от количества падающей на него световой энергии. Поскольку А.Белл доказал возможность передачи на расстояние сложного сигнала, множество изобретателей начали разрабатывать способы "электрического видения" (как гласил один из заголовков статьи того времени).

В одних способах использовалась мозаика селеновых детекторов, в других изображение сканировалось механически одним или несколькими селеновыми датчиками. Для воспроизведения изображений также предлагались разнообразные методы от перемещения карандаша до электромеханического воздействия на лист бумаги, размещенный в приемнике и пропитанный химическим составом. Светочувствительные свойства селена на практике были использованы лишь в 1892 г, когда Элстер и Гейтл изобрели фотоэлемент. Именно такие элементы и явились принципиальной основой современного телевидения. Второй важной вехой в развитии телевидения стало изобретение, принесшее практическую пользу, созданного в 1882 г немецким экспериментатором Паулем Нипковым [1860-1940] "электрического телескопа" и запатентованного им в 1884 г. Идея Нипкова состояла в том, что на передающем конце линии изображение разлагается на отдельные электрические сигналы, затем осуществляется последовательная передача этих сигналов и восстановление этого полного изображения на приемном конце. Такой способ давал возможность передавать телевизионное изображение по одному телефонному или радиоканалу. Основу камеры составлял широко известный сейчас диск Нипкова. Он имел 24 отверстия, расположенных на равном расстоянии по спирали у периферии диска. Передаваемое изображение фокусировалось на небольшом участке периферии диска, а сам диск вращался с частотой 600 об/мин. При вращении диска изображение последовательно сканировалось отверстиями по прямым линиям. Линза, установленная за проецируемым изображением, собирала последовательные световые выборки и фокусировала их на одном селеновом элементе. При этом, селеновый элемент формировал последовательность токовых сигналов, каждый из которых был пропорционален яркости отдельных элементов изображения. На приемной стороне Нипков предложил использовать магнитооптический (основанный на эффекте Фарадея) модулятор света, изменяющий яркость восстанавливаемого изображения. Для формирования изображения был необходим другой диск, аналогичный диску передатчика и вращающийся синхронно с ним.

Нипков не занимался созданием аппаратуры, что было не столь важно, поскольку технология того времени не позволяла создать подобную систему (только один модулятор света потребовал бы управляющего сигнала мощностью 10 Вт). Однако его диск послужил моделью для нескольких более поздних телевизионных систем. В начале 20-х годов Джон Лодж Бэрд в Англии и Дженкинс в США совершенно независимо друг от друга провели целый ряд экспериментов по передаче телевидения с использованием механической развертки. Причем, Джона Бэрда больше интересовала проверка реализации своих идей, чем их промышленное внедрение.

В 1889 г в Санкт-Петербурге на Первом Всероссийском съезде Константин Дмитриевич Перский (преподаватель электротехники в Константиновском артиллерийском училище, капитан артиллерии) выступил с докладом "Современное состояние вопроса об электровидении на расстоянии (телевизирование)". Затем он повторил его 24 августа 1900 г в Париже на Международном электротехническом конгрессе, где впервые применил термин "телевидение" ("television"). До этого (как впрочем и до середины 30-х годов) в отношении телевидения в зарубежной и отечественной литературе применялись термины: "электрическая телескопия", "радиотелескопия" и "дальновидение".

Механическая система развертки накладывала вполне определенные ограничения на объем передаваемой информации, качество и размеры воспроизводимого изображения. Поэтому даже в более ранних работах, чем приведено выше, некоторых первых исследователей наблюдалась тенденция к использованию электронного оборудования, свободного от указанных выше недостатков. В 1906 г Дикман и Глейс в Германии, а в 1907 г петербургский электрофизик Борис Львович Розинг [1869-1933] получили патенты на системы телевидения, использующие приемник с электронно-лучевой трубкой (ЭЛТ). Первое предложение о телевизионной системе, полностью построенной на основе электронного оборудования было сделано Аланом Арчибальдом Кемпбеллом-Свинтоном в 1908 г. Как и П. Нипков, А.Кемпбелл-Свинтон не изготовил аппаратуру, но очень подробно описал свою идею в июньском номере журнала "Nature". Его система была основана на ЭЛТ, изобретенной в 1897 г Карлом Фердинандом Брауном в Страссбурге (трубка с множеством фотоэлементов, соединенных впараллель, каждый их которых до развертки записал определенный заряд и за каждый период развертки мог отдать только один импульс). А. Кемпбелл-Свинтон предложил использовать ЭЛТ как в передатчике, так и в приемнике. При этом он тогда отмечал, что главной проблемой является "создание эффективного передатчика, который под влиянием светлых и темных участков будет в достаточной степени изменять передаваемый электрический ток, чтобы обеспечить необходимую модуляцию электронного луча в приемном устройстве".

В 1911 г Б.Л.Розинг продемонстрировал в лабораторных условиях передачу телевизионных изображений простых геометрических фигур и прием их с воспроизведением на экране ЭЛТ.

В 1923 г американский инженер и изобретатель Владимир Кузьмич Зворыкин [1889-?] (русский по происхождению - в 1917 г эмигрировал из России в США, ученик Б.Л.Розинга) зарегистрировал патент на передающую телевизионную ЭЛТ, названную иконоскопом. Она отличалась от ранних образцов применением модуляции интенсивности электронного луча с помощью осесимметричной сетки. Принципиально важным в этой ЭЛТ было то, что фотокатоды из посеребренной слюды "запоминали" заряды, образуемые фокусируемым на них изображением, а сканирующий электронный луч нейтрализовывал заряды и одновременно модулировался. Следует отметить, что появившееся примерно в тот же период устройства без "запоминания" зарядов (например диссектор изображения Фила Фарнсуорта) были менее удачными. Через год после изобретения иконоскопа В.К.Зворыкин изобрел кинескоп - приемную телевизионную ЭЛТ с электростатическим отклонением и фокусировкой луча, став тем самым создателем основных передающего и приемного элементов электронного телевидения.

Одна из первых публичных демонстраций телевидения была осуществлена Дженкинсом 13 июня 1925 г, когда он передал изображение между аиационной станцией ВМС в Анакосте (шт. Мэриленд) и своей лабораторией в Вашингтоне (окр. Колумбия), т.е. на расстоянии в несколько км. При проведении этого эксперимента использовалась механическая система развертки.

В начале 30-х годов усилия ученых и изобретателей были направлены на разработку электронных систем развертки, т.е. развитие телевидения вступило в свой следующий этап развития - период совершенствования.

Дата: 2018-12-28, просмотров: 313.