С т р у к т ура телевизионного сигнала
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

В приемнике (Пр) из модулированных колебаний выделяется сигнал

яркости, который с помощью приемной трубки – кинескопа (К) – преобразуется в оптическое изображение. В канале синхронизации (КС) происходит отделение синхроимпульсов от сигнала яркости. Выделенные синхроимпульсы используются для синхронизации блока развертки (БР) приемного устройства.

Кроме синхроимпульсов в состав телевизионного сигнала должны также входить гасящие импульсы, которые запирают передающую и приемную трубки во время обратного хода строчной и кадровой разверток.

Таким образом, полный телевизионный сигнал состоит из сигналов яркости (видеосигнала), сигналов строчной и кадровой синхронизации и гасящих импульсов (ГИ).

Для упрощения процесса ознакомления целесообразно рассмотреть сначала  структуру ТВ  сигнала  во  временном интервале, где  отсутствуют

 
кадровые гасящие импульсы (КГИ). Форма полного ТВ сигнала, соответствующего одному периоду строчной развертки, представлена на рисунке.

 

 

В интервале времени, соответствующем прямому ходу строчной развертки, передается видеосигнал, величина которого пропорциональна яркости передаваемых элементов изображения. Уровень видеосигнала, соответствующий минимальному значению яркости, называется уровнем черного, а уровень, соответствующий максимальному значению яркости, – уровнем белого. Между этими уровнями располагаются все остальные значения видеосигнала, соответствующие промежуточным значениям яркости.

Чтобы  обратные  ходы  разверток не  были  заметны  зрителю, необходимо яркость в это время сделать минимальной. Для этой цели в видеосигнал  во  время  обратного  хода  строчной  и  кадровой  разверток

вводятся специальные строчные и кадровые гасящие импульсы (СГИ и КГИ),


длительность которых соответствует длительности обратных ходов строчной и кадровой разверток.

Чтобы обеспечить синхронность и синфазность работы развертывающих устройств в телевизорах и в ТВ оборудовании телецентра,

одновременно с видеосигналом передаются строчные и кадровые синхронизирующие импульсы (ССИ, КСИ). Данные импульсы не должны мешать передаче видеосигнала, поэтому их располагают на вершинах ГИ в так называемой области «чернее черного». Различие между ними состоит в частоте повторения и длительности: частота повторения ССИ соответствует частоте строк, а длительность равна 4,7 мкс, частота следования КСИ равна

50 Гц при длительности 160 мкс.

В полном ТВ сигнале за опорный принимается уровень ГИ. Он создает границу между областью передачи видеосигнала и областью передачи сигналов синхронизации. Если принять весь размах ТВ сигнала Umax за 100

%, то согласно стандарту амплитуда синхронизирующих импульсов (СИ) всегда должна составлять 30 % от этого максимума вне зависимости от содержания  изображения.  Это  постоянство  амплитуды  обеспечивает

надежное их отделение от видеосигнала в телевизорах. Уровень белого видеосигнала при положительной полярности (рисунок 11.8) отстоит от максимального уровня полного ТВ сигнала (контрольного уровня белого) на

10…15 % от Umax, а между уровнем черного и уровнем ГИ располагается охранная полоса,  составляющая от  0  до  7  %  от  Umax.  Данная  охранная полоса необходима для предохранения синхронизирующих импульсов от попадания импульсных помех из области видеосигнала.

Структура ТВ  сигнала  во  время  передачи  кадровых импульсов показана на рисунке 11.9. Строки кадра нумеруются последовательно цифрами от 1 до 625, начиная от передачи фронта КСИ в первом поле. Первым считается то поле, у которого фронты КСИ и ССИ совпадают. При чересстрочной развертке первое поле включает строки с 1 по 312 и половину

313 строки, а второе поле включает вторую половину строки 313 и строки с

314 по 625. Для исключения нарушений строчной синхронизации ССИ следует передавать и во время КГИ, и во время КСИ. ССИ во время передачи КСИ помещаются внутри него в виде врезок, из которых в телевизорах формируются обычные ССИ.

 

 


Известно, что человеческий глаз воспринимает как единое целое красную (Red), зеленую (Green) и синюю (Blue) части видимого спектра. Таким образом, цветовое восприятие человека трехкомпонентное. Конечно, мы воспринимаем больше цветовых оттенков - считается, что 16 миллионов - но для нас, в силу особенностей цветового восприятия, все они сводятся к комбинациям этих трех “главных” цветов (в теории цвета их называют опорными). Исходя  из  этого,  все  телевизионные камеры  и  другие технические датчики цветных изображений формируют три сигнала - R, G, B, а в телевизионных и компьютерных мониторах экран одновременно сканируют три электронных луча, вызывая световые вспышки красного, зеленого и синего цветов. Глаз же при этом воспринимает только результирующее изображение во всем богатстве цветов реального мира. В то же время для телепереноса цветного изображения через эфир технически эффективнее кодировать цвет иным образом. Дело в том, что глаз менее чувствителен к пространственным изменениям оттенков цвета, чем к изменениям яркости. Поэтому цветовая информация может передаваться с меньшей  пространственной четкостью  (разрешением).  В  результате исходные RGB-видеосигналы в телевидении перед передачей преобразуют (кодируют) в сигнал яркости Y и два цветоразностных сигнала U и V:

Y = 0.299R + 0.587G + 0.114B, U = R - Y, V = B - Y,

при этом U и V передаются с разрешением, в два раза меньшим, чем Y. Такое

уменьшение объема передаваемой информации позволяет строить более дешевые системы. Выбор  вышеуказанных коэффициентов преобразования

определяется жестким требованием двусторонней совместимости черно- белых  и  цветных приемников -  яркостной  сигнал  Y  совпадает  с формируемым в ч/б системах, ч/б приемники воспринимают только его. Что касается цветовых сигналов U и V, то они добавляются к яркостному сигналу путем модуляции специального гармонического сигнала (цветовой поднесущей)  на  частоте,  лежащей в  пределах  спектра  сигнала  Y.  В результате полосы яркостного сигнала и полного видеосигнала совпадают. Модуляция поднесущей может осуществляться по амплитуде, фазе или частоте согласно U- и V- значениям. При приеме для точного определения величин модуляции необходима привязка к опорной несущей. Для этого в начале каждой строки передаются пакеты немодулированной несущей - так называемые синхроимпульсы. Таким образом телевизионный видеосигнал, с определенными оговорками, представляет собой композицию трех сигналов Y, U, V и синхроимпульсов. Такой сигнал называют композитным.

При приеме в цветном телевизоре осуществляется обратный процесс восстановления (декодирования):

R = Y + U, B = Y + V, G = Y - 0.509U - 0.194V

Телевизионное      изображение      воспроизводится     путем

последовательного сканирования электронными лучами по покрытому электролюминисцирующим веществом экрану. Сканирование происходит слева направо вдоль горизонтальных линий (телевизионных строк) и сверху


вниз по строкам. Лучи пробегают строку за строкой сверху вниз до самого низа экрана, а затем возвращаются назад, и опять - слева-направо сверху- вниз. За счет инерционности глаза в процессе подобного сканирования вызываемые цветовые вспышки света сливаются в линии, а затем в полное изображение. В результате полный телевизионный кадр представляет собой совокупность последовательно высвечиваемых линий, передающих пространственное распределение изображения. Установлено, что для восприятия человеческим глазом этой совокупности как целого она должна обновляться не реже 50 раз каждую секунду. В телевидении был реализован чересстрочный режим развертки, при котором за каждый проход луч пробегает только половину линий - сначала четные, затем - нечетные. Таким образом, каждый телевизионный кадр оказывается разделенным на два полукадра - их называют полями. В результате, когда мы говорим о вертикальной частоте в 50 Гц, кадровая оказывается в два раза меньше - 25

Гц.

В  настоящее  время  в  эксплуатации  находятся  три  совместимых системы цветного телевидения - NTSC, PAL, SECAM. Основные различия между ними заключаются в конкретных методах кодирования телевизионного сигнала (см. таблицу).

 

 

Тип системы NTSC PAL SECAM
Вертикальная частота развертки, Гц 60 50 50
Горизонтальная частота развертки, кГц 15.374 15.625 15.625
Число строк в кадре 525 625 625
Число видимых (активных) строк в кадре 480 576 576
Тип модуляции цветовой поднесущей Амплитудная Амплитудная Частотная
Полоса видеосигнала, МГц 4.2 5 для B/G, 5.5для I, 6 для D/K
Частота цветовой поднесущей, МГц 3.60 4.43 4.41 по U, 4.25 по V
Разнос несущих видео/звук, МГц 4.5 5.5 для B/G, 6 для I, 6.5 для D/K
Полная ширина сигнала, МГц 6 7 для B/G 8 для I/D/K

 

Кратко остановимся на особенностях этих систем, рассматривая их в хронологическом порядке. NTSC (National Television System Color) - первая система цветного телевидения, нашедшая практическое применение. Она была разработана в США и уже в 1953 г. принята для вещания, а в настоящее время вещание по этой системе ведется также в Канаде, большинстве стран


Центральной и Южной Америки, Японии, Южной Корее и Тайване. Именно при ее создании были выработаны основные принципы передачи цвета в телевидении. В NTSC каждая телевизионная строка содержит составляющую яркости Y и два сигнала цветности EI = 0.737U - 0.268V , EQ=0.478U+0.413V. Здесь переход от осей цветового кодирования U, V к осям I, Q обусловлен необходимостью сужения ширины полос цветовых поднесущих всего до ±

0.5 Мгц (в NTSC используется самая узкая полоса видеосигнала). Поскольку глаз человека мелкие детали зеленого и пурпурного цветов (ось Q) воспринимает как неокрашеные (ось I - перпендикулярная к Q), то для сигналов EQ и EI это удается без дополнительных потерь в разрешении. Цветоразностные сигналы передаются путем амплитудной модуляции поднесущих на одной и той же частоте, но с фазовым сдвигом на 90° . Последнее обстоятельство является принципиально важным для разделения сигналов при приеме. Однако, из-за неизбежных нелинейных искажений в канале передачи поднесущие оказываются промодулированными сигналом яркости как по амплитуде, так и по фазе. В результате в зависимости от яркости  участков  изображений  изменяются  их  цветовой  тон.  Например,

человеческие  лица  на  изображении окрашиваются в  красноватый  цвет  в тенях и в зеленоватый - на освещенных участках. Это и является основным недостатком системы NTSC.

C целью его устранения немецкой фирмой “Telefunken” в 1963 г. была разработана система PAL (Phase Alternation Line). Здесь использована аналогичная амплитудная модуляция цветоразностных сигналов EU=0.877U и EV=0.493V с фазовым сдвигом на 90° , но через строку дополнительно производится изменение знака амплитуды составляющей EU. В результате при  восстановлении  в  декодере  цветовые  составляющие надежно разделяются сложением/вычитанием сигналов цветности последовательных телевизионных строк, и паразитная яркостная модуляция приводит лишь к некоторому изменению цветовой насыщенности. Усреднение сигналов двух

строк обеспечивает также повышение отношения сигнал/шум, но приводит к снижению вертикальной четкости в два раза. Впрочем частично последнее компенсируется увеличением числа телевизионных строк разложения. Система PAL принята в большинстве стран Западной Европы, Африки и Азии, включая Китай, Австралию и Новую Зеландию.

Система SECAM (SEquentiel Couleur A Memoire) первоначально была предложена во Франции еще в 1954 г., но регулярное вещание после длительных доработок было начато только в 1967 одновременно во Франции и СССР. В настоящее время она принята также в Восточной Европе, Монако, Люксембурге, Иране, Ираке и некоторых других странах. Основная особенность системы - поочередная, через строку, передача цветоразностных сигналов (DR= –1.9U, DB=1.5V) с дальнейшим восстановлением в декодере путем повторения строк. При этом в отличие от PAL и NTSC используется

частотная  модуляция  поднесущих. В  результате  цветовой  тон  и насыщенность не зависят от освещенности, но на резких переходах яркости возникают цветовые окантовки. Обычно после ярких участков изображения


окантовка имеет синий цвет, а после темных - желтый. Кроме того, как и в системе PAL, цветовая четкость по вертикали снижена вдвое.

Таковы общие принципы кодирования цвета     в различных видеосистемах телевидения. Но этим многообразие стандартов не ограничивается.

Дело в том, что для формирования полного телевизионного сигнала к видео необходимо добавить звук, а полученный так называемый низкочастотный телевизионный  сигнал  передать  через  эфир  путем модуляции гармоники одного из доступных радиоканалов (48,5...66 МГц - первый  частотный диапазон,  76...100  МГц  -  второй  частотный  диапазон,

174...230 МГц - третий частотный диапазон, 470...790 МГц - четвертый частотный диапазон). И здесь даже в рамках одной системы существуют различия, связанные с конкретной шириной спектра видеосигнала и его разносом со звуковой частью, полярностью амплитудной модуляции радиоканала изображения и типом модуляции радиоканала звука. В таблице представлены основные параметры телевизионных стандартов стран мира.

 

Лекция № 9

Оптическое волокно — нить из оптически прозрачного материала (стекло, пластик), используемая для переноса света внутри себя посредством полного внутреннего отражения.

Волоконная оптика — раздел прикладной науки и машиностроения, описывающий такие волокна. Кабели на базе оптических волокон используются в волоконно-оптической связи, позволяющей передавать информацию на большие расстояния с более высокой скоростью передачи данных, чем в электронных средствах связи. В ряде случаев они также используются при создании датчиков.

                                           






Материалы

 

Стеклянные оптические волокна делаются из кварцевого стекла, но для дальнего инфракрасного диапазона могут использоваться другие материалы, такие как флуоро-цирконат, флуоро-алюминат и халькогенидные стекла. Как и другие стекла, эти имеют показатель преломления около 1,5.

В настоящее время развивается применение пластиковых оптических волокон (Plastic optical fibers).

 

История

У истоков светопередачи

Свет как средство передачи информации, например в виде сигнальных костров, использовался уже в древних цивилизациях. Подобные примеры существуют и в наши дни в использовании маяков, светофоров, фар автомобилей. 200 лет назад человечество начало разрабатывать методы передачи информации на расстояния с помощью света. Так, во Франции около 1790 г. Клод Шапп смастерил первую систему оптического телеграфа, которая включала в себя цепь семафорных башен с подвижными сигнальными рейками. Информация, передаваемая по ней за 15 минут доходила на расстояние 200 км. Система устарела только после изобретения электрического телеграфа.

В Америке в 1880 г. Александром Беллом был изобретен фотофон. Речь здесь передавалась с помощью света. От этого изобретения пришлось отказаться, из за влияния погодных условий на качество работы.

Физик из Великобритании Джон Тиндаль в свою очередь показал, что свет может передаваться в потоке воды. Он использовал принцип внутреннего отражения света, который успешно применяется в современных оптических шнурах.

 

 

Новая эпоха оптоволокна

В 1934 г. американец Норман Френч запатентовал первую оптическую телефонную систему. В ней речевые сигналы передавались с помощью оптического кабеля, который должен был быть из чистого стекла или похожего материала, имеющего небольшой коэффициент затухания. Реализована эта концепция лишь спустя два с половиной десятилетия, когда был найден подходящий передатчик - источник света. В 1958 г. лауреатами Нобелевской премии был разработан лазер, который впервые заработал в 1960 г.

Проблема изготовления лазеров из полупроводниковых материалов решена в 1962 г. Тогда же появляется приемник в виде полупроводниковых фотодиодов. Оставалось найти подходящую передающую среду.

Ученые пробовали передавать свет по полому световоду, имеющему зеркальные края и системы специальных линз. Англичане Чарльз Као и Джордж Хокем в 1966 г. предложили стекловолокно в качестве среды для передачи света. Однако, чтобы система связи была эффективной, необходимо было, чтобы волокно имело коэффициент затухания не более 20 дБ/км. Потери в современных видах кабеля составляли около 1000 дБ/км. Тем не менее в сфере медицинских технологий уже в 50х были внедрены световоды, передающие изображения на короткие расстояния.

В 1970 г. компания "Corning inc." создала оптические волокна с коэффициентом затухания < 20 дБ/км при длине волны 633 нм. В 1972 г. удалось добиться затухания 4 дБ/км. Современные одномодовые волокна при длине волны 1550 нм. имеют коэффициент затухания 0,2 дБ/км. Передатчики и приемники в свою очередь значительно усовершенствованы, увеличена их мощность, чувствительность, а также их срок эксплуатации.

 

Современные технологии

Первые виды оптического кабеля начали эксплуатироваться в телефонной связи на кораблях ВМФ США в 1973 г. Компания "Bell systems" впервые испытала работу оптического кабеля длиной более 3 км, а фирма "General Telephone" - оптического кабеля длиной более 9 км. Корпорация "Siecor Corp." - совместное предприятие "Siemens AG" и "Corning Inc", была первым поставщиком одномодового оптического кабеля для телефонной компании в Нью-Йорке в сентябре 1983 г. Первое подводное оптоволокно было успешно проложено через Атлантический океан в 1988 г.

Первая полноценная волоконно-оптическая линия связи для "Deutsche Telekom AG" была построена АО "Siemens" в 1977 г. Со следующего года весь мир начал применять новую технологию с использованием многомодового оптического кабеля. В наши дни ежегодно прокладывается более 7 миллионов километров одномодового оптического кабеля.

 

Классификация


Чаще всего волокна подразделяют на 2 общих типа волокон:

1. Многомодовые волокна

2. Одномодовые

 

Дадим пояснение на «бытовом» уровне что есть одномод и многомод.
Представим гипотетическую систему передачи с волокном воткнутым в нее.

Нам надо передать двоичную информацию. Импульсы электричества в волокне не распространяются, ибо диэлектрик, поэтому мы будим передавать энергию света.

Для этого нам нужен источник световой энергии. Это могут быть светодиоды и лазеры.

Теперь мы знаем что мы используем в качестве передатчика — это свет.

Подумаем как свет вводится в волокно:

1) Световое излучение имеет свой спектр, поэтому если сердцевина волокна широкая (это в многомодовом волокне), то больше спектральных составляющих света попадет в сердцевину.

Например мы передаем свет на длине волны 1300нм (к примеру), сердцевина многомода широкая, то и путей распространения у волн больше. Каждый такой путь и есть моды.

 

2) Если же сердцевина маленькая (одномодовое волокно), то путей распространения волн соответственно уменьшается. И так как дополнительных мод гораздо меньше, то и не будет и модовой дисперсии (о ней ниже).

 

Это основное отличие многомодового и одномодового волокон.

 

Многомодовые в свою очередь делятся на волокна со ступенчатым показателем преломления (step index multi mode fiber) и с градиентным (graded index multi mode fiber).

Одномодовые делятся на ступенчатые, стандартные (standard fiber), со смещенной дисперсией (dispersion-shifted) и ненулевой смещенной дисперсией (non-zero dispersion-shifted)

 



Дата: 2018-12-28, просмотров: 341.