Разновидности электромагнитных реле

 

    Токовые реле

 

Токовые реле – электромагнитные реле, включенные на ток сети (непосредственно или через трансформаторы тока).

Для уменьшения нагрузки на трансформатор тока токовые реле должны иметь по возможности малое потребление мощности. Обмотки токовых реле рассчитываются на длительное прохождение токов нагрузки и кратковременное – токов КЗ. k воз должен приближаться к единице.

Реле РТ–40. Ток срабатывания регулируется плавно изменением натяжения пружины. Обмотка реле состоит из двух секций, что позволяет путём параллельного и последовательного включений изменять пределы регулирования тока срабатывания. При последовательном соединении число витков возрастает, увеличивается точность, диапазон уменьшается в 2 раза.

Обозначение реле РТ–40/0,2 – диапазон токов срабатывания – 0,05...0,2 А;

       РТ–40/20 – 5...20А.

В справочниках по реле указываются: пределы уставок, термическая стойкость, коэффициент возврата, потребляемая мощность.

 

    Реле напряжения

 

По конструкции реле напряжения аналогичны токовым, подключаются к трансформаторам напряжения.

Реле РН–55. В реле напряжения для снижения вибраций подвижной системы обмотка реле включена в сеть вторичного тока не непосредственно, а через выпрямитель.

    Промежуточные реле

 

Применяются, когда необходимо одновременно замыкать несколько независимых цепей или когда требуется реле с мощными контактами для замыкания/размыкания цепей с большим током.

Промежуточные реле по способу включения подразделяются на реле параллельного и последовательного включения.

Параллельное включение. Основные выходные реле: РП–23, РП–24. Реле, обладающие большим быстродействием: РП–211, РП–212 – 0,01...0,02 с. Обычно время срабатывания промежуточных реле от 0,02 до 0,1 с.

 

                           Рис. 3.2.1

 

Последовательное включение. Используется, если выходной сигнал при срабатывании защиты слишком кратковременен для обеспечения отключения выключателей.

 

 

                                           Рис. 3.2.2

 

 

Параллельное включение с удерживающей последовательно включенной катушкой. РП–213, РП–214, РП–253, РП–255.

 

 

                 Рис. 3.2.3

 

В справочниках указываются номинальные величины напряжения, тока, время срабатывания, допустимый ток, контактная система реле.

Конструкция. Промежуточные реле в основном выполняются при помощи системы с поворотным якорем – достоинство этой системы в большой электромагнитной силе при малом потреблении мощности, удобна для изготовления многоконтактных реле.

 

Указательные реле

 

Ввиду кратковременности прохождения тока в обмотке указательного реле они выполняются так, что сигнальный флажок и контакты реле остаются в сработавшем состоянии до тех пор, пока их не возвратит на место обслуживающий персонал.

          Рис. 3.2.4

 

Типы указательных реле: РУ–21, СЭ–2, ЭС–41.

 

Реле времени

Служат для искусственного замедления действия устройств релейной защиты. Основное требование – точность. Погрешность во времени действия реле не должна превышать ±0,25 с, а для высокоточных реле ±0,06 с.

 

       Рис. 3.2.5

 

Конструкция. При появлении тока в обмотке якорь втягивается, освобождая рычаг с зубчатым сегментом. Под действием пружины рычаг приходит в движение, замедляемое устройством выдержки времени. Через определенное время подвижный контакт замкнет контакты реле.

 

 

       Рис. 3.2.6

 

Типы реле времени: ЭВ–100, ЭВ–200. Широко используется и полупроводниковые реле времени серии ВЛ. Изготовляются реле времени с синхронным электродвигателем серии Е–52, ВС–10. Реле серий Е–512, Е–513 имеют двигатели постоянного тока.

 

Для уменьшения размеров реле их катушки не рассчитаны на длительное прохождение тока. Поэтому реле, предназначенные для длительного включения под напряжение, выполняются с добавочным сопротивлением r д.

 

       Рис. 3.2.7

    Индукционные реле

     Принцип действия индукционных реле

 

Реле состоит из подвижной системы, расположенной в поле двух магнитных потоков Ф1 и Ф2 (рис. 4.4.2). Магнитные потоки создаются токами, проходящими по обмоткам неподвижных электромагнитов. Подвижная система представляет собой алюминиевый диск, закрепленный на оси. Пронизывая диск, магнитные потоки наводят в нем ЭДС Ед1 и Ед2. Под действием этих ЭДС в диске возникают вихревые токи I д1 и I д2, замыкающиеся вокруг оси индуктирующего их магнитного потока. Между магнитным потоком и током, находящимся в его поле возникает электромагнитная сила взаимодействия: F э1 – от взаимодействия магнитного потока Ф1 с током I д2 и F э2 – от взаимодействия магнитного потока Ф2 с током I д1. (Сила взаимодействия между магнитным потоком и контуром тока, индуктированного этим потоком, равна нулю.) Результирующая сила Fэ=Fэ1+FЭ2 создает вращающий момент МЭ= F э d, где d – плечо силы F э. Диск приходит во вращение:

Рис. 4.4.2

 

Мэ = kf Ф1Ф2 sin y .                                                                        

 

Из анализа формулы (4.17) следует

1. Для получения электромагнитного момента конструкция реле должна создавать не менее 2 – переменных магнитных потоков, пронизывающих подвижную систему в разных точках и сдвинутых по фазе на угол y¹0.

2. Величина Мэ зависит от амплитуды Ф1 и Ф2 и их частоты f и от сдвига фаз y. Момент будет максимальным при y=90°.

3. Знак момента зависит от угла y.

4. На индукционном принципе могут выполняться только реле переменного тока. Токи в диске индуктируются только когда электромагниты питаются переменным током.

 

     Индукционное реле с короткозамкнутыми витками

 

Реле состоит из электромагнита охватывающего своими полюсами укрепленный на оси диск (рис. 4.4.3). На верхний и нижний полюсы электромагнита насажены короткозамкнутые витки, охватывающие часть сечения полюсов. Токи в обмотке I р и короткозамкнутом витке I к создают магнитные потоки Фр и Фк. Из-под сечения полюса I выходит результирующий магнитный поток Ф1, из-под второй части полюса – поток Ф2. Оба магнитных потока пронизывают диск, индуктируя в нем вихревые токи. Магнитные потоки сдвинуты по фазе, т.е. конструкция обеспечивает создание двух сдвинутых по фазе и смещенных в пространстве магнитных потоков.

 

 

Рис. 4.4.3

Дата: 2019-02-02, просмотров: 30.