Теория отведений Эйнтховена. Анализ электрокардиограмм
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Сердце человека – это мощная мышца. При синхронном возбуждении волокон сердечной мышцы, в среде, окружающей сердце, течет ток, который даже на поверхности тела создает разности потенциалов в несколько мВ. Эта разность потенциалов регистрируется при записи электрокардиограммы. Моделировать электрическую активность сердца можно с использованием дипольного электрического генератора.

Дипольное представление о сердце лежит в основе теории отведений Эйнтховена, согласно которой ‑ сердце ‑ это токовый диполь с дипольным моментом Рс (электрический вектор сердца), который поворачивается, изменяет свое положение и точку приложения за время сердечного цикла (рис. 15).

По Эйнтховену сердце располагается в центре равностороннего треугольника, вершинами которого являются: правая рука – левая рука – левая нога (рис. 16 а).

Разности потенциалов, снятые между этими точками – это проекции дипольного момента сердца на стороны этого треугольника:

 

Эти разности потенциалов, со времени Эйнтховена в физиологии принято называть «отведениями». Три стандартных отведения приведены на рис. 16 б. Направление вектора Рс определяет электрическую ось сердца.

Рис. 15. Распределение эквипотенциальных линий на поверхности тела

 

Рис. 16 а.

 

Линия электрической оси сердца при пересечении с направлением 1-го отведения образует угол , который определяет направление электрической оси сердца (рис. 16 б). Так как электрический момент сердца-диполя изменяется со временем, то в отведениях будут получены зависимости разности потенциалов от времени, которые называются электрокардиограммами.

Ось О – это ось нулевого потенциала. На ЭКГ отмечают три характерных зубца P, QRS, T (обозначение по Эйнтховену). Высоты зубцов в различных отведениях обусловлены направлением электрической оси сердца, т.е. углом  (рис. 16 б). Наиболее высокие зубцы во втором отведении, низкие в третьем. Сопоставляя ЭКГ в трех отведениях за один цикл составляют представление о состоянии нервно-мышечного аппарата сердца (рис. 16 в).

 

Рис. 16 б. Нормальная ЭКГ в трех стандартных отведениях

 

 

Рис. 16 в. Зубец Р – деполяризация предсердия, QRS – деполяризация желудочков, Т – реполяризация

 

Факторы, влияющие на ЭКГ

 

Положение сердца. Направление электрической оси сердца совпадает с анатомической осью сердца. Если угол  находится в пределах от 40°до 70°, это положение электрической оси считается нормальным. ЭКГ имеет обычные соотношения зубцов в I, II, III стандартных отведениях. Если  близок или равен 0°, то электрическая ось сердца параллельна линии первого отведения и ЭКГ характеризуется высокими амплитудами в I отведении. Если  близок к 90°, амплитуды в I отведении минимальны. Отклонение электрической оси от анатомической в ту или другую сторону клинически означает одностороннее поражение миокарда.

Изменение положения тела вызывает некоторые изменения положения сердца в грудной клетке и сопровождается изменением электропроводности окружающих сердце сред. Если ЭКГ не изменяет своей формы при перемещении тела, то этот факт тоже имеет диагностическое значение.

Дыхание. При вдохе электрическая ось сердца отклоняется примерно на 15°, при глубоком вдохе до 30°. Нарушения или изменения дыхания также могут быть диагностированы по изменению ЭКГ.

Физическая нагрузка всегда вызывает существенное изменение в ЭКГ. У здоровых людей эти изменения состоят главным образом в учащении ритма. При функциональных пробах с физической нагрузкой могут иметь место такие изменения, которые явно указывают на патологические изменения в работе сердца (тахикардия, экстрасистолия, мерцательная аритмия и т.д.).

Диагностическая значимость метода ЭКГ несомненно велика (совместно с другими методами диагностики).

 

Допущения теории Эйнтховена

 

–  Электрическое поле сердца на больших расстояниях от него подобно полю токового диполя.

–  Весь организм – это однородная проводящая среда.

–  Электрический вектор сердца изменяется по величине и направлению за время сердечного цикла, но начало вектора остается неподвижным.

–  Точки стандартных отведений образуют равносторонний треугольник, в центре которого находится сердце – токовый диполь. Проекции дипольного момента сердца – это отведения Эйнтховена.

–  Сердце и конечности находятся в одной и той же фронтальной плоскости.

Если представить, что сердце (его основание) заряжено отрицательно, а верхушка положительно, то распределение эквипотенциальных линий вокруг сердца при максимальном значении Рс показано на рис. 15. Видно, что электрическое поле распространяется преимущественно в сторону правой руки и левой ноги, т.е. в этом направлении будет зафиксирована наибольшая разность потенциалов.

 


 


Дата: 2019-02-02, просмотров: 282.