В 1980-е годы во многих промышленных развитых странах началась разработка широкополосной цифровой сети интегрированным обслуживанием (B-ISDN - Broadband Integrated Services Digital Network). Создание такой сети позволяет организовать такие службы, как высококачественная видеотелефония, видеоконференции, высокоскоростная передача данных, передача телевизионных программ высокого качества, поиск видеоинформации и ряд других. Для этого требуются скорости передачи, превышающие 2 Мбит/с, являющихся максимальной скоростью, предоставляемой пользователю узкополосной ISDN.
В результате исследований, проводившихся с середины 80-х годов, МККТТ (ныне МСЭ-Т - сектор стандартизации электросвязи Международного союза электросвязи) принял в 1988 г. рекомендацию I.121, определившую общие принципы B-ISDN. Наиболее важный из них - использование асинхронного режима переноса информации (АТМ - Asynchronous Transfer Mode), реализующего процессы передачи и коммутации выше физического уровня.
Решающее значение при выборе АТМ имело то, что большинство источников информации работают в прерывистом режиме. Например, коэффициент активности речи составляет 0,3 - 0,4, еще меньше он в интерактивных системах передачи данных, весьма разнообразна видеоинформация и т.д.
Поэтому применение синхронного режима переноса (STM - Synchronous Transfer Mode), при котором выделяется постоянная полоса пропускания, соответствующая наивысшей мгновенной скорости передачи информации, оказывается весьма неэффективным. В то же время асинхронный режим переноса, основанный на статистических (пакетных) методах, позволяет гибко распределять полосу пропускания, обеспечивая совместную работу разнообразных служб в условиях изменения параметров служб и нагрузки.
В 1990 г. МККТТ принял еще ряд рекомендаций серии I, регламентирующие организацию B-ISDN на основе АТМ. В соответствии с определениями рекомендаций I.113 и I.121, термин АТМ обозначает специфический пакетно-ориентированный режим переноса информации, использующий метод асинхронного временного разделения, при котором поток информации организуется в блоки фиксированной длины, называемые ячейками.
Для прояснения терминологии следует заметить, что согласно рекомендации G.803 различают термины "передача" (transmission), обозначающий физический процесс распространения сигнала по каналу связи, и "перенос" (transfer) - процесс перемещения информации по сети. Ячейка (по английски cell) имеет длину 53 байта, из которых 48 байтов - информация пользователя и 5 байт - заголовок. Основное назначение заголовка - идентификация ячеек, принадлежащих одному и тому же виртуальному каналу.
АТМ является методом, ориентированным на установление соединений. До начала передачи информации между пользователями должен быть организован виртуальный канал. Сигнальная и пользовательская информация передаются по отдельным виртуальным каналам. Группа виртуальных каналов, проходящих на некоторых участках сети по одному и тому же направлению, может объединяться в виртуальный тракт. Поскольку АТМ предполагает использование высокоскоростных и обладающих высокой помехозащищенностью цифровых систем передачи (как правило, на основе волоконно-оптических линий), повышение верности осуществляется только в оборудовании пользователей. Отказ от повышения верности в узлах коммутации значительно упрощает алгоритм их функционирования и позволяет применять в них аппаратные средства, имеющие значительно более высокое быстродействие, чем программируемые микропроцессоры. Высокая пропускная способность трактов передачи, быстродействие коммутационных устройств и короткая длина ячеек обеспечивают, как правило, быструю доставку ячеек по сети. Контроль за их доставкой осуществляется в оконечном оборудовании пользователей. По своей сути метод АТМ представляет собой разновидность метода коммутации пакетов - так называемую быструю коммутацию пакетов - наиболее близкую по своим пользовательским характеристикам методу коммутации каналов.
Несмотря на то, что технология АТМ своим происхождением связана с созданием B-ISDN, АТМ - больше, чем основа только для B-ISDN. Сеть АТМ способна не только быть основой для организации самых разнообразных служб в рамках B-ISDN, предназначенных для передачи данных, изображений и т.д. Она также может служить транспортной средой для телефонной сети, узкополосной ISDN, связи городских сетей передачи данных (MAN) и др.
Использования технологии АТМ позволяет строить гибкие сети, эффективно использующие пропускную способность трактов передачи за счет их статистического мультиплексирования. Универсальность АТМ состоит еще и в том, что это первая технология, которая может использоваться в сетях любого масштаба: локальных (LAN), городских (MAN) и территориальных (WAN).
Архитектура сети АТМ
Сеть АТМ состоит из связанных между собой АТМ коммутаторов. Находящееся за пределами сети оборудование пользователя взаимодействует с коммутаторами через интерфейс пользователь-сеть (UNI - User-Network Interface). Для взаимодействия коммутаторов между собой служит интерфейс сетевого узла (NNI - Network Node Interface). МСЭ-Т стандартизировал в рекомендации I.432 два типа интерфейса UNI: на скоростях 155 и 622 Мбит/с (это скорости 1-го и 4-го уровней SDH). Подготовлены стандарты по использованию технологии АТМ на первичной скорости европейской иерархии 2 Мбит/с.
Уровни сети АТМ
Рассмотрим функции каждого из трех нижних уровней B-ISDN (сети АТМ).
Уровень адаптации АТМ (AAL - ATM Adaptation Layer) осуществляет преобразование пользовательской информации в информационные поля ячеек и наоборот. Именно наличие AAL придает АТМ присущую ей способность переносить разнообразную пользовательскую информацию в стандартных ячейках. Стандартизировано несколько типов уровня адаптации, соответствующие различным классам обслуживания и предназначенные для преобразования разных видов информации. Следует подчеркнуть, что процедуры ААL реализуются вне пределов сети АТМ в оконечном оборудовании пользователя. Уровень адаптации может использовать для своих нужд до 4 байт в пределах 48-байтного информационного поля ячейки, оставляя таким образом непосредственно для полезной информации пользователей 44 байта. AAL делится, в свою очередь, на два подуровня: подуровень конвергенции (CS - Convergence Sublayer) и подуровень разборки и сборки (SAR - Segmentation And Reassembly).
Уровень АТМ добавляет к полученным от подуровня SAR 48-байтным последовательностям 5-байтовые заголовки, формируя таким образом ячейки АТМ, передаваемые затем на физический уровень. К функциям уровня АТМ относятся также: управление входным потоком на интерфейсе пользователь-сеть; мультиплексирование ячеек, принадлежащим различным виртуальным каналам и трактам, в единый поток; преобразование идентификаторов виртуальных каналов в узлах коммутации. На приемной стороне уровень АТМ осуществляет демультиплексирование потока ячеек и удаление заголовков.
Физический уровень также состоит из двух подуровней: подуровень конвергенции передачи (TC - Transmission Convergence) и подуровень, зависящий от физической среды (PMD - Physical Medium Dependent). Подуровень ТС осуществляет согласование потока ячеек с используемой системой передачи (например, упаковывает ячейки АТМ в контейнеры SDH). Подуровень PMD ответственен за передачу и прием битов, передаваемых в конкретной физической среде (оптическое волокно, коаксиальный кабель).
Структура ячейки АТМ
Как уже указывалось выше, ячейки АТМ имеют фиксированную длину 53 байта, из которых первые 5 байта - заголовок, а остальные 48 байт - информационное поле.
Структура заголовка несколько различается на интерфейсах пользователь-сеть (UNI) и сетевого узла (NNI). На интерфейсе UNI первые 4 бита отводятся для управления потоком, поступающим от пользователя. Следующие 24 бита составляет поле маршрутизации, содержащие 8-битный идентификатор виртуального тракта (VPI - Virtual Path Identifier) и 16-битный идентификатор виртуального канала (VCI - Virtual Channel Identifier). Следующие 3 бита занимают указатель типа нагрузки, содержащейся в информационном поле данной ячейки. Значения этого поля от 0 до 3 указывают на информацию пользователя, значения 4 и 5 - управляющую информацию, а значение 6 и 7 пока не используются и зарезервированы на будущее. Далее расположено 1-битное поле приоритета потери ячейки, использующиеся для управления потоком ячеек. Оно устанавливается равным 1 для тех ячеек, которые при перегрузках в сети могут быть отброшены в первую очередь. Последний (пятый) байт заголовка отведен для контроля ошибок заголовка с использованием циклического избыточного кода. С его помощью можно исправить единичную или обнаружить многократную ошибку в первых четырех байтах заголовка. Заголовок ячейки на интерфейсе сетевого узла NNI отличается от описанного выше заголовка ячейки на интерфейсе UNI только тем, что в нем исключается поле управления потоком, а первые четыре бита отведены для идентификатора виртуального тракта, который таким образом занимает 12 бит. Такое перераспределение позволяет увеличить число возможных виртуальных каналов.
Дата: 2019-02-02, просмотров: 315.