Как использовать систему big data
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Эффективные решения в области работы с большими данными для самых разных направлений деятельности осуществляются благодаря множеству существующих на данный момент комбинаций программного и аппаратного обеспечения. Важное достоинство big data — возможность применять новые инструменты с теми, которые уже используются в этой сфере. Это играет особенно важную роль в ситуации с кросс-дисциплинарными проектами. В качестве примера можно привести мультиканальные продажи и поддержку потребителей.

 Для работы с big data важна определенная последовательность: сначала происходит сбор данных; затем информация структурируется. С этой целью используются дашборды (Dashboards) — инструменты для структурирования; на следующем этапе создаются инсайты и контексты, на основании которых формируются рекомендации для принятия решений. В силу высоких затрат на сбор данных, основная задача — это определить цель использования полученных сведений.

Пример. Рекламные агентства могут использовать агрегированную у телекоммуникационных компаний информацию о местоположении. Такой подход обеспечит таргетированную рекламу. Эта же информация применима и в других сферах, связанных с оказанием и продажей услуг и товаров. Полученная таким образом информация может оказаться ключевой в принятии решения об открытии магазина в конкретной местности. В то же время мобильные операторы всегда знают основную информацию о своих абонентах: их расположение, семейное положение и так далее. Можно допустить, что в скором времени реклама на любом щите будет подстраиваться под каждого конкретного человека.

 Еще одна потенциальная область применения big data — сбор информации о количестве посетителей различных мероприятий.

Пример. Организаторы футбольных матчей не способны знать точное число пришедших на матч заранее. Тем не менее, они получили бы такие сведения, воспользуйся они информацией от операторов мобильной связи: где находятся потенциальные посетители за определенный период времени — месяц, неделю, день — до матча. Получается, у организаторов появилась бы возможность спланировать локацию мероприятия в зависимости от предпочтений целевой аудитории.

 Big data дает также несравнимые преимущества для банковского сектора, который может воспользоваться обработанными данными для того, чтобы выявить недобросовестных картодержателей.

Пример. При заявлении держателя карты о ее утере или краже банк имеет возможность отследить местоположение карты, по которой производится расчет, и мобильного телефона держателя, чтобы удостовериться в правдивости информации. Таким образом, представитель банка имеет возможность увидеть, что платежная карта и мобильный телефон держателя находятся в одной зоне. А значит — карту использует владелец.

Благодаря преимуществам подобного рода использование информации дает компаниям много новых возможностей, а рынок big data продолжает развиваться. Основная трудность внедрения big data состоит в сложности расчета кейса. Осложняется этот процесс наличием большого количества неизвестных. Достаточно сложно делать какие-либо прогнозы на будущее, в то время как данные о прошлом не всегда находятся в зоне доступа.

 В этой ситуации самое главное — планирование своих первоначальных действий: Определение конкретного вопроса, в решении которого будет применена технология обработки big data, поможет определиться с концепцией и задаст вектор дальнейших действий. Сделав акцент на сборе информации именно по указанному вопросу, стоит также воспользоваться всеми доступными инструментами и методами для получения более ясной картины. Более того, такой подход значительно облегчит процесс принятия решения в будущем. Вероятность того, что проект big data будет реализован командой без определенных навыков и опыта — крайне мала. Знания, которые необходимо использовать в таком сложном исследовании, обычно приобретаются долгим трудом, поэтому предыдущий опыт так важен в этой сфере. Сложно переоценить влияние культуры использования информации, полученной путем подобных исследований. Они предоставляют различные возможности, в том числе и злоупотребления полученными материалами. Чтобы использовать информацию во благо, стоит придерживаться элементарных правил корректной обработки данных.

Инсайты — основная ценность технологий. Рынок все еще испытывает острую нехватку сильных специалистов — имеющих понимание законов ведения бизнеса, важности информации и области ее применения. Нельзя не учитывать тот факт, что анализ данных — ключевой способ достижения поставленных целей и развития бизнеса, нужно стремиться к выработке конкретной модели поведения и восприятия. В таком случае большие данные принесут пользу и сыграют положительную роль в решении вопросов ведения дел. Как достигать поставленных целей

 

 

 

 

 

 

 

Big data в мире

По данным компании IBS, к 2003 году мир накопил 5 эксабайтов данных (1 ЭБ = 1 млрд гигабайтов). К 2008 году этот объем вырос до 0,18 зеттабайта (1 ЗБ = 1024 эксабайта), к 2011 году — до 1,76 зеттабайта, к 2013 году — до 4,4 зеттабайта. В мае 2015 года глобальное количество данных превысило 6,5 зеттабайта.

К 2020 году, по прогнозам, человечество сформирует 40-44 зеттабайтов информации. А к 2025 году вырастет в 10 раз, говорится в докладе The Data Age 2025, который был подготовлен аналитиками компании IDC. В докладе отмечается, что большую часть данных генерировать будут сами предприятия, а не обычные потребители.

Аналитики исследования считают, что данные станут жизненно-важным активом, а безопасность — критически важным фундаментом в жизни. Также авторы работы уверены, что технология изменит экономический ландшафт, а обычный пользователь будет коммуницировать с подключёнными устройствами около 4800 раз в день.

 

 

 

 

Примеры использования Big Data в компаниях

  На сегодняшний день Big Data активно внедряются в зарубежных компаниях. Такие компании, как Nasdaq, Facebook, Google, IBM, VISA, Master Card, Bank of America, HSBC, AT&T, Coca Cola, Starbucks и Netflix уже используют ресурсы Big Data.
Сферы применения обработанной информации разнообразны и варьируются в зависимости от отрасли и задач, которые необходимо выполнить.
Далее будут представлены примеры применения технологий Big Data на практике.
HSBC использует технологии Big Data для противодействия мошеннических операций с пластиковыми картами. С помощью Big Data компания увеличила эффективность службы безопасности в 3 раза, распознавание мошеннических инцидентов – в 10 раз.

Антифрод VISA позволяет в автоматическом режиме вычислить операции мошеннического характера, система на данный момент помогает предотвратить мошеннические платежи на сумму 2 млрд долл. США ежегодно.
Суперкомпьютер Watson компании IBM анализирует в реальном времени поток данных по денежным транзакциям. По данным IBM, Watson на 15% увеличил количество выявленных мошеннических операций, на 50% сократил ложные срабатывания системы и на 60% увеличил сумму денежных средств.
Procter & Gamble с помощью Big Data проектируют новые продукты и составляют глобальные маркетинговые кампании. P&G создал специализированные офисы Business Spheres, где можно просматривать информацию в реальном времени.
Таким образом, у менеджмента компании появилась возможность мгновенно проверять гипотезы и проводить эксперименты. P&G считают, что Big Data помогают в прогнозировании деятельности компании.
Ритейлер офисных принадлежностей OfficeMax с помощью технологий Big Data анализируют поведение клиентов. Анализ Big Data позволил увеличить B2B выручку на 13%, уменьшить затраты на 400 000 долларов США в год.
По мнению Caterpillar, ее дистрибьюторы ежегодно упускают от 9 до 18 млрд долл. США прибыли только из-за того, что не внедряют технологии обработки Big Data. Big Data позволили бы клиентам более эффективно управлять парком машин, за счет анализа информации, поступающей с датчиков, установленных на машинах.
На сегодняшний день уже есть возможность анализировать состояние ключевых узлов, их степени износа, управлять затратами на топливо и техническое обслуживание.
Luxottica group является производителем спортивных очков, таким марок, как Ray-Ban, Persol и Oakley. Технологии Big Data компания применяет для анализа поведения потенциальных клиентов и «умного» смс-маркетинга. В результате Big Data Luxottica group выделила более 100 миллионов наиболее ценных клиентов и повысила эффективность маркетинговой кампании на 10%.
С помощью Yandex Data Factory разработчики игры World of Tanks анализируют поведение игроков. Технологии Big Data позволили проанализировать поведение 100 тысяч игроков World of Tanks с использованием более 100 параметров (информация о покупках, играх, опыт и др.). В результате анализа был получен прогноз оттока пользователей. Данная информация позволяет уменьшить уход пользователей и работать с участниками игры адресно. Разработанная модель оказалась на 20-30% эффективнее стандартных инструментов анализа игровой индустрии.
Министерство труда Германии использует Big Data в работе, связанной с анализом поступающих заявок на выдачу пособий по безработице. Так, проанализировав информацию, стало понятно, что 20% пособий выплачивалось незаслуженно.


 














Рынок Big data в России

В 2017 году мировой доход на рынке Big date должен достигнуть $150,8 млрд, что на 12,4% больше, чем в прошлом году. В мировом масштабе российский рынок услуг и технологий big data ещё очень мал. В 2014 году американская компания IDC оценивала его в $340 млн. В России технологию используют в банковской сфере, энергетике, логистике, государственном секторе, телекоме и промышленности.

 

 

 

Дата: 2019-02-02, просмотров: 214.