Основы принятия решений и ситуационного моделирования
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Основы принятия решений

 

Принятие решения и деятельность человека в социальной, экономической, политической, идеологической, военной сферах тесно связаны. В них крайне нежелательны ошибки, которые могут привести к пагубным последствиям. Но из-за ограниченных информационных возможностей человека ошибки всегда возможны. Поэтому есть настоятельная необходимость применения научного подхода к обоснованию и принятию решений.

Принятие решений, наряду с прогнозированием, планированием и др. является функцией управления.

Все функции управления направлены так или иначе на формирование или реализацию решений.

При прогнозировании и планировании принимаются решения, связанные с выбором методов и средств, организацией работы, оценкой достоверности информации, выбором наиболее достоверного варианта прогноза и наилучшего варианта плана.

Функция принятия решений является с методологической и технологической точек зрения более общей, чем другие функции управления.

Для лица, принимающего решение (ЛПР), принятие решений является основной задачей, которую он обязан исполнять в процессе управления. Поэтому знание методов, технологий и средств решений этой задачи является необходимым элементом квалификации руководителя, базой для дальнейшего управления.

Конечным результатом любой задачи принятия решений становится решение, конструктивное предписание к действию.

Решение является одним из видов мыслительной деятельности и имеет следующие признаки:

· имеется выбор из множества возможностей;

· выбор ориентирован на сознательное достижение целей;

· выбор основан на сформировавшейся установке к действию.

 Решение тем эффективнее, чем больше степень достижения целей и меньше стоимость затрат.

Принятие решения - это выбор одного из множества рассматриваемых допустимых вариантов. Обычно их число конечно, а каждый вариант выбора определяет некоторый результат (экономический эффект, прибыль, выигрыш, полезность, надежность и т.д.), допускающий количественную оценку.

Такой результат обычно называется полезностью решения. Таким образом, ищется вариант с наибольшим значением полезности решения. Возможен и подход с минимизацией противоположной оценки, например, отрицательной величины полезности.

Часто на практике встречается ситуация, когда каждому варианту решения соответствует единственный результат (детерминированность выбора решения), хотя возможны и другие случаи, например, когда каждому варианту i и условию j, характеризующему полезность, соответствует результат решения xij. Таким образом, можно говорить о матрице решений       

                         ||xij||, i = 1,2,…,m; j =1,2,…,m.

  Чтобы оценить решение, необходимо уметь оценивать все его последствия. Существуют различные подходы для такой оценки.

 Например, если решения альтернативные, то можно последствия каждого из них характеризовать:

· суммой его наибольшего и наименьшего результатов,

· максимумом из возможных таких сумм,

· максимумом из максимумов по всем вариантам (оптимистическая позиция выбора),

· максимумом из среднего арифметического (нейтральная позиция выбора),

· максимумом из минимума (пессимистическая позиция) и др.

Классические модели принятия решений, как правило, являются оптимизационными, ставящими цель максимизировать выгоду и на основе этих моделей получить практическую прибыль.

Так как теоретиков больше интересует первая сторона, а практиков - вторая, то при разработке и использовании таких моделей необходимо их тесное сотрудничество. Практические рекомендации  могут быть получены, если при построении модели принятия решений придать большее значение разработке имитационной модели принятия решений, с привлечением экспериментальных, полуэкспериментальных и теоретических методов. Кроме классических, оптимизационных процедур принятия решений существуют и ряд базовых неклассических (неоклассических) процедур, технологий принятия решений.

Классификация задач принятия решений проводится по различным признакам. Наиболее существенными являются:

· степень определенности информации;

· использование эксперимента для получения информации;

· количество лиц, принимающих решения;

· содержание решений;

· направленность решений.

На процесс принятия решения часто воздействуют различные случайные (стохастические) параметры, усложняющие процедуру. Недостаток информации об их распределении  приводит к необходимости принятия гипотез об области их изменения и о характере их распределения.

  Проблемы принятия решений с недетерминированными параметрами называют проблемами принятия решений в условиях недостатка информации.

Чем меньше информации у исследователей, тем больше может оказаться различие между ожидаемыми и действительными результатами принимаемых решений в целом.

   Мера влияния информации (параметров) на результат решения называется релевантностью.

Особо важно в социально-экономической сфере принятие решения при наличии рисков (неплатежей, не возвратов кредитов, ухудшения условий жизни и т.д.).

Формализуемые решения

 

  Формализуемые решения принимаются на основе соответствующих математических методов (алгоритмов).

Математическая модель задачи оптимизации формализуемого решения включает следующие элементы:

1. заданную оптимизируемую целевую функцию (критерий управляемости): Ф = F(x1, x2,…,xn), (j = 1, 2,…,n) , где xj - параметры, учитываемые при принятии решения (отражающие ресурсы принятия решений);

2. условия, отражающие ограниченность ресурсов и действий при принятии решений: gi(xj) < ai, ki (xj) = bi; cj < xj < di, i = 1, 2,…,m;         j = 1, 2,…, n.

Непременным требованием для решения задачи оптимизации является условие n > m.

В зависимости от критерия эффективности, стратегий и факторов управления выбирается тот или иной метод (алгоритм) оптимизации.

Основными являются следующие классы методов:

1. методы линейного и динамического программирования (принятия решения об оптимальном распределении ресурсов);

2. методы теории массового обслуживания (принятие решения в системе со случайным характером поступления и обслуживания заявок на ресурсы);

3. методы имитационного моделирования (принятие решения путем проигрывания различных ситуаций, анализа откликов системы на различные наборы задаваемых ресурсов);

4. методы теории игр (принятие решений с помощью определения стратегии в тех или иных состязательных задачах);

5. методы теории расписаний (принятие решений с помощью разработки календарных расписаний выполнения работ и использования ресурсов);

6. методы сетевого планирования и управления (принятие решений с помощью оценки и перераспределения ресурсов при выполнении проектов, изображаемых сетевыми графиками);

7. методы многокритериальной (векторной) оптимизации (принятие решений при условии существования многих критериев оптимальности решения) и др.

  Выбор решения - заключительный и наиболее ответственный этап процесса принятия решений.

Здесь необходимо осмыслить всю информацию, полученную на этапах постановки задачи и формирования решений  и использовать ее для обоснования выбора решения. В реальных задачах принятия решений к началу этапа выбора решения еще сохраняется большая неопределенность, поэтому сразу осуществить выбор единственного решения из множества допустимых решений  очень сложно.

Поэтому на практике используется принцип последовательного уменьшения неопределенности, который заключается в последовательном трехэтапном (обычно) сужении множества решений:

· На первом этапе исходное множество альтернативных решений Y сужается (используя ограничения на ресурсы) до множества приемлемых или допустимых решений Y1 Y.

· На втором этапе множество допустимых решений Y1 сужается (учитывая критерий оптимальности) до множества эффективных решений Y2 Y1.

· На третьем этапе осуществляется выбор (на основе критерия выбора и дополнительной информации, в том числе и экспертной) единственного решения Y* Y2.

Система принятия решений – это совокупность организационных, методических, программно-технических, информационно-логических и технологических обеспечений принятия решений для достижения поставленных целей.

Общая процедура принятия решений может состоять из следующих этапов:

· анализ проблемы и среды (цели принятия решения, их приоритеты, глубина и ограничения рассмотрения, элементы, связи, ресурсы среды, критерии оценки);

· постановка задачи (определение спецификаций задачи, альтернатив и критериев выбора решения);

· выбор (адаптация, разработка) метода решения задачи;

· выбор (адаптация, разработка) метода оценки решения;

· решение задачи (математическая и компьютерная обработка данных, имитационные и экспертные оценки, уточнение и модификация, если это необходимо);

· анализ и интерпретация результатов.

Задачи принятия решений могут быть поставлены и решены в условиях:

· детерминированности, т.е. определенности, формализуемости  и единственности целевой функции, детерминированности  риска, когда возможные решения, исходы распределены вероятностно;

· недетерминированности, т.е. неопределенности, неточности, плохой формализуемости информации.

В моделях принятия решений используются различные процедуры. В частности, наиболее просты и эффективны следующие:

· методы математического программирования;

· методы кривых безразличия;

· многокритериального выбора альтернатив на основе четкого или же нечеткого отношения предпочтения;

· последовательной оценки и последующего исключения вариантов;

· многомерного ранжирования объектов и др.

При выборе рационального решения  необходимо принимать во внимание внешнюю среду  и побочные явления, динамическую изменчивость критериев оценок решения, необходимость ранжирования аспектов и приоритетов решения, их неполноту и разнородность (а иногда и конфликтность).

   Продемонстрируем ситуационное моделирование на примере моделирования деятельности банка. Банковская система является одной из подсистем современной экономической системы, наиболее подверженной информатизации.

   Развитие банковской системы сопровождается постоянным поиском адекватных оптимальных методов и инструментов управления, принятия решений на основе экономико-математического анализа и моделирования деятельности банков.

При этом необходимо учитывать тот факт, что финансовые операции имеют еще и стохастические составляющие, усложняющие и без того сложные процессы начисления процентных ставок, взносов и выплат, регулирования и управления, инвестиций и др.

Эти процессы сложны не только динамически, но и, логически. Кроме того, от таких прогнозов зависят:

· прогноз,

· анализ темпов инфляции,

· структуры активов и пассивов банка,

· доходности акций,

· курсов валют,

· процентная ставка и др.

 

      Ситуационный анализ денежных потоков является динамическим процессом, использующим методы оптимизации и критерии оптимальности. При ситуационном анализе некоторых базовых значений величины активов можно по некоторым критериям оптимальности  выбрать оптимальный набор возможных, допустимых финансовых операций, обеспечивающих, например, наибольшую доходность.

 Возможно также получение решения задач, свидетельствующего об отсутствии роста (или малого роста) каких-либо финансовых параметров, например, активов, из которого можно сделать вывод о невозможности проведения оптимизирующих операций (процедур).

Пусть dt - средний уровень доходности, получаемый в результате проведения некоторых инвестиционных мероприятий, а Pt - процентная ставка на момент времени t = 0, 1, 2, ..., T. Тогда рост активов A будет осуществляться по закону

и можно использовать при ситуационном анализе критерий эффективности:

Соотношение между доходностью активов и ценой пассивов коммерческого банка является важнейшим показателем, который отражает эффективность денежно-финансовой политики банка.

Ситуационный  анализ соотношения осложняется рядом факторов:

1. Структура активов и пассивов могут отражаться ссудами различной длительности, а также различными схемами размещения и привлечения обязательств и ценных бумаг, например, возврат денег может быть осуществлен по схеме ежемесячного отчисления процентов и уплаты кредита в конце либо по схеме единовременного возврата суммы долга и процентов в конце промежутка кредитования.

2. Необходимостью учета (прогноза) инфляционного ожидания и "увеличения" или "очистки" тех или иных составляющих активов и пассивов в зависимости от инфляции;

3. Различными параметрами и факторами, влияющими на степень риска, затрудненностью оценки величины риска.

    Различные структуры и схемы размещения и привлечения финансовых ресурсов определяют и различные динамические модели.

Например, если схема предусматривает возврат долга с процентами одновременно, реальная ставка рублевого кредита d может быть определена по формуле

d = (z - a) / (1 + a / 100) (%),

где z - номинальная ставка рублевого кредита (%), а - инфляция за период кредитования (%).

  Одним из эффективных механизмов принятия деловых решений  является использование ИСПР (просто СПР) - информационных систем поддержки решений (Decision Support Systems), сочетающих современные средства аналитической обработки и средства визуализации информации и технологии поддержки деятельности экспертной группы.

Литература

 

 

1. Казиев В.М. Введение в анализ, синтез и моделирование систем. htpp://www.intuit.ru

2. http://www.fmi.asf.ru/Library/Book/SimModel/Glava1.HTML

Дата: 2018-12-28, просмотров: 206.