Иррадиация и концентрация нервных процессов
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Возбуждение или торможение, возникшие в какой-либо клетке или группе клеток мозга, не остаются неподвижными, а всегда склонны к распространению. Распространение нервного процесса из очага его возникновения на окружающие нервные клетки называется иррадиацией.

Иррадиация торможения. Иррадиацию условного торможения удобно наблюдать в кожном анализаторе. Широко развернутая кожная поверхность тела является как бы увеличивающим зеркалом, в котором можно ясно видеть, как по последовательно расположенным проекционным полям будет иррадиировать тормозное состояние, например дифференцировочное торможение.

Иррадиацию дифференцировочного торможения обнаружили в следующем опыте.

 

Вдоль задней ноги собаки от стопы до бедра наклеивали пять «касалок» — приборов для механического раздражения кожи (рис. 35). Четыре верхние касалки использовали как сигналы условных пищевых слюноотделительных рефлексов. Эти рефлексы укрепляли, пока их слюноотделительный эффект не стал приблизительно одинаковым. Нижняя касалка служила дифференцировочным раздражителем и применялась без подкрепления едой, пока не перестала вызывать даже малейшего слюноотделения. Если теперь, вслед за применением дифференцировочной касалки, попробовать положительные раздражители, то оказывается, что слюногонное действие последних претерпевает закономерные изменения.

 

Рис. 35. Опыт с иррадиацией дифференцировочного торможения по корковым клеткам кожного анализатора:

0 — дифференцировочный раздражитель, 1, 2, 3, 4 — положительные условные раздражители (прикладываются к пунктам кожи ноги на расстоянии от дифференцировочного раздражителя соответственно на 3, 9, 15 и 22 см)

 

 

В классических опытах Н.Н. Красногорского и Б.А. Когана условный рефлекс на каждую из положительных касалок составлял 5 капель слюны за 30 с. Но каждый раз, когда дифференцировочная касалка создавала очаг торможения, начинали изменяться и соседние положительные рефлексы. Следовательно, торможение выходит за пределы своего очага и захватывает соседние клетки анализатора, в данном случае те, на которые проецируются кожные пункты положительных касалок. Далее видно, что в одинаковых условиях минутного интервала после троекратного действия дифференцировочной касалки условные рефлексы с положительных касалок изменяются по-разному, в зависимости от расположения последних относительно дифференцировочной. Так, рефлекс с ближайшего пункта (касалка 1) оказался полностью заторможенным. Рефлекс с пункта, расположенного несколько дальше (касалка № 2), был только уменьшен. Рефлексы с остальных пунктов, расположенных еще дальше, не только не испытали торможения, но даже усилились. Следовательно, иррадиирующее торможение оказывает тем более сильное воздействие на клетки анализатора, чем ближе они находятся к тормозному очагу. По своей природе иррадиация торможения — это развитие ТПСП на все большей территории коры, но не истинное движение процесса.

Концентрация торможения. После широкой иррадиации наступает сосредоточение, концентрация торможения в месте своего возникновения. Этот процесс тоже удобно проследить на примере дифференцировочного торможения в кожном анализаторе. Опыты проводили так же, как и при наблюдении иррадиации, но положительные рефлексы с каждого пункта кожи испытывали в различные сроки после окончания действия тормозного раздражителя. При помощи такого приема можно увидеть, как сначала далеко распространившееся тормозное состояние начинает сосредоточиваться, возвращаясь к исходному пункту.

При своем концентрировании торможение проходит в обратной последовательности все те пункты проекционных полей анализаторов, которые оно захватывало в своем поступательном движении.

Что собой представляет процесс концентрации торможения? Здесь не исключены две возможности. Первая заключается в том, что распространившееся торможение рассеивается, затухает на периферии и занимаемая им территория постепенно уменьшается. Вторая возможность — это подъем обратной волны торможения к тому месту, откуда оно распространилось. Последнее более вероятно, как, например, упрочение дифференцировки сопровождается усилением тормозного процесса. Следовательно, концентрация торможения связана не с рассеиванием и ослаблением, а с его сосредоточением и усилением.

Скорость иррадиации и концентрации торможения в коре головного мозга собаки. Скорость иррадиирования тормозного состояния удалось измерить в кожном анализаторе. Для этого определяли время развития вторичного торможения условного рефлекса на раздражение пункта кожи, находящегося в известном удалении от первично угашаемого. Опыты проводили следующим образом. В разных местах тела собаки приклеивали к коже касалки. На все касалки вырабатывали условные пищевые слюнные рефлексы и укрепляли их до одинаковой величины. Затем наносили повторные раздражения какой-либо одной касалкой без подкреплений до тех пор, пока не достигали исчезновения слюноотделения. Как только эта касалка проявляла свое тормозное действие, испытывали состояние рефлекса с другого пункта. На основании ряда таких испытаний в разные сроки после вызова угасательного торможения и при разных расстояниях испытуемых пунктов от его очага определяли время иррадиирования (Б.А. Коган).

В этом опыте вторично затормаживаемые пункты испытывали медленно после раздражения, давшего нулевой результат, т.е. без всякого промежутка времени между ними. В этот момент, как видно, торможение из пункта, соответствующего правой стороне груди еще не успело распространиться дальше ближайших участков. До области, например, правой предплюсны оно еще не дошло. Однако постепенно увеличивая промежутки времени от тормозного раздражения до момента испытания рефлекса, можно уловить момент, когда торможение дойдет до пункта, соответствующего правой предплюсне. Оказалось, что процесс иррадиирования торможения по нервным клеткам коры протекает очень медленно. Для прохождения области одного только кожного анализатора торможению требуются минуты.

Продолжая увеличивать промежуток времени между моментом приложения тормозного раздражителя к одному пункту и моментом испытания рефлекса с другого пункта, можно определить и скорость концентрирования угасательного торможения в кожном анализаторе.

Абсолютные величины времени концентрации тормозного процесса, как и времени его иррадиации, сильно зависят от индивидуальных особенностей подопытных животных, однако их соотношение оказалось довольно постоянным у всех испытуемых собак. Как правило, иррадиирование происходит в 4–5 раз быстрее, чем последующее концентрирование.

Иррадиация возбуждения. Опыт, показывающий иррадиацию возбудительного процесса, в некоторых отношениях напоминает описанные выше опыты с иррадиацией торможения.

 

У собаки вдоль задней ноги от плюсны до таза на примерно одинаковом расстоянии друг от друга приклеивали пять касалок (рис. 36). На действие самой нижней касалки (№ 1) вырабатывали условный рефлекс слюноотделения, подкрепляемый вливанием раствора кислоты в рот собаки. При первом испытании и другие касалки (№ 2, 3, 4 и 5) как сходные раздражители тоже вызывали слюноотделение. Поэтому необходимо было выработать дифференцирование этих касалок, применяя многократно касалку № 1 с подкреплением, а остальные касалки — без подкрепления. Теперь только касалка № 1 вызывала слюноотделение, а остальные превратились в тормозные сигналы.

После такой подготовки приступали к главной части опыта. Включали положительную касалку № 1 на 15 с и сразу после ее выключения действовали отдифференцированной касалкой № 2. Однако ее действие тоже вызывало слюноотделение. Это означало, что пункт кожного анализатора, соответствующий касалке № 2, обычно находящийся в тормозном состоянии, сразу после возникновения очага возбуждения в пункте, соответствующем касалке № 1, тоже оказался в возбужденном состоянии. Иначе говоря, возбуждение из пункта касалки № 1 в это время распространилось на пункт касалки № 2. Если испытать таким образом и какой-либо другой, более удаленный пункт кожного анализатора, то можно судить о районе такой иррадиации. Эти опыты показали, что иррадиирующее возбуждение по мере удаления от очага своего развития постепенно ослабевает.

 

Рис. 36. Опыт с иррадиацией возбуждения по корковым клеткам кожного анализатора:

1 — положительный условный раздражитель, 2, 3, 4, 5 — дифференцировочные раздражители

 

 

В другом варианте опытов под наблюдение была взята более обширная область кожного анализатора. Касалки располагали от конца передней лапы через все туловище до конца задней лапы. Первая касалка на конце передней лапы была положительным сигналом, а все остальные — дифференцировочными. Испытания дифференцировочными касалками показали, что уже через 0,5–1 с по прекращении положительного сигнала возбудительный процесс обнаруживается на соседних пунктах.

Таким образом, иррадиация возбуждения в коре мозга происходит гораздо быстрее, чем иррадиация торможения, и требует менее секунды для распространения по области кожного анализатора.

Через некоторое время после положительного сигнала соседние пункты анализатора вновь оказываются в прежнем тормозном состоянии. Это означает, что волна возбуждения успела уже разлиться по коре и вновь сосредоточиться в исходном пункте.

 

Индукция нервных процессов

 

Движение основных процессов высшей нервной деятельности определяется не только свойствами иррадиации и концентрации, но и свойствами их взаимной индукции. Индукцией называется свойство каждого из основных нервных процессов вызывать вокруг себя и после себя противоположный процесс.

Положительная индукция из очагов угасательного и дифференцировочного торможения. В опытах с иррадиацией угасательного торможения по кожному анализатору часто наблюдают такое явление: повторение раздражения какой-либо одной касалкой без подкрепления способствует полному угасанию условного рефлекса с раздражаемого пункта кожи. Однако сразу после этого раздражение касалкой с другого отдаленного пункта выявляет этот рефлекс в резко усиленном виде. Возникший в первом пункте очаг сильного торможения индуцировал в отдаленном пункте возбуждение, привел этот пункт в состояние повышенной возбудимости.

Еще более четко явление положительной индукции было выявлено в специальных опытах на примере индукции, развиваемой дифференцировочным торможением. Так, у собаки вырабатывали условный пищевой рефлекс слюноотделения, в котором сигналом служило раздражение касалкой кожи передней лапы. Другая касалка была установлена на задней ноге. Ее применяли без подкреплений, так что скоро она приобрела тормозное значение дифференцировочного раздражителя. На включение дифференцировочной касалки слюноотделения не наступало, однако испробованный сразу после нее положительный раздражитель давал резко усиленный рефлекс (табл. 7).

Измерение силы условного рефлекса количеством слюны обнаруживает, что торможение в пункте задней лапы усилило условное возбуждение в пункте передней лапы почти на 50 %. Следовательно, в данном случае положительная индукция произошла из очага торможения в дальнем пункте анализатора.

 

Таблица 7. Положительная индукция из очага дифференцировочного торможения в кожном анализаторе (по Д.С. Фурсикову, 1922)

 

Однако мозг часто дифференцирует раздражители, связанные с одним и тем же пунктом анализатора, но отличающиеся друг от друга по силе или характеру воздействия. Будет ли в таких случаях проявляться положительная индукция? Ответ на этот вопрос дает следующий опыт. У собаки был выработан условный пищевой рефлекс на сильный свет, от него отдифференцировали слабый свет. Затем сильный свет был испробован сразу после слабого. И здесь условный слюнной рефлекс, вызванный сразу после дифференцировочного, увеличился почти на 50 %. Следовательно, в данном случае положительная индукция произошла из очага торможения в том же пункте анализатора.

Таким образом, положительная индукция может проявляться в различных анализаторах и при разных отношениях тормозного очага и положительно индуцируемого рефлекса.

Отрицательная индукция из очага возбуждения в очаг торможения. Явления отрицательной индукции можно продемонстрировать в следующем опыте. У собаки образован условный пищевой рефлекс на метроном 120 ударов/мин. К этому положительному раздражителю выработана дифференцировка метронома 60 ударов/мин. Как известно, дифференцировку очень легко разрушить, если начать сопровождать дифференцировочный раздражитель подкреплением. И действительно, после того как несколько раз метроном 60 ударов/мин применили с подкармливанием, он сам начал вызывать слюноотделение. Это простой и безотказный способ уничтожения тормозного очага.

Однако при помощи некоторых средств можно задержать разрушение дифференцировки, т.е. продлить существование очагов условного торможения. В частности, таким средством оказалось применение положительных сигналов, т.е. создание очагов условного возбуждения. Это видно из следующих опытов.

Например, собаку подкармливают после каждого применения метронома с частотой 60 ударов/мин до тех пор, пока у нее не начнет сильно выделяться слюна (разрушение дифференцировки). Тогда применяют с подкреплением один раз метроном с частотой 120 ударов/мин. В результате используемый вслед за ним метроном <...часть числа не видна…>0 ударов/мин, который только что вызывал слюноотделение, сразу теряет свое действие. Дифференцировка при этом восстанавливается, что связано с возникновением рядом очага возбуждения. Этот очаг отрицательно индуцировал, т.е. затормозил клетки пункта метронома с частотой 60 ударов/мин, и индукционное торможение усилило остатки дифференцировочного.

Таким образом, положительный сигнал благодаря отрицательной индукции укрепляет свое дифференцирование от близких отрицательных сигналов.

Мозаика возбуждения и торможения в высших отделах нервной системы. Взаимодействие иррадиирующих и индуцированных нервных процессов создает необычно сложное и меняющееся от момента к моменту их уравновешивание и территориальное разграничение. В результате возбуждение и торможение образуют дробный рисунок подвижной мозаики, непрерывно меняющей свои очертания.

В свое время И.П. Павлов говорил о том, какую замечательную картину вспыхивающих и затухающих, непрерывно перемежающихся мерцаний мы увидели бы на поверхности мозга, если бы его возбужденные пункты светились.

Эта мысль Павлова получила осуществление при изучении движения нервных процессов по коре больших полушарий с помощью методики электроэнцефалоскопии (М.Н. Ливанов, В.М. Ананьев, 1960). Электроэнцефалоскоп позволяет наблюдать мозаику электрической активности коры мозга при одновременном отведении из <…часть числа не видна…>00 ее пунктов и воспроизводит на экране телевизионной трубки непрерывно возникающие и меняющиеся подвижные картины, которые фиксируются киносъемкой (рис. 37). Такой «телевизор» мозга значительно расширяет возможности объективного изучения пространственной динамики активности коры при условно-рефлекторной деятельности.

 

Рис. 37. Перераспределение очагов активности в коре мозга кролика при выработке условного двигательного рефлекса на зрительное раздражение (по М.Н. Ливанову):

кадры киносъемки из опыта с сочетаниями вспышек света и изоритмических электрокожных раздражений лапы, яркость каждой точки на экране топоскопа отражает величину электрической активности этого пункта в данный момент (обратить внимание на постепенную концентрацию активности в районе двигательного и зрительного анализаторов)

 

Глава 6

СОН И СНОВИДЕНИЯ

 

Сон — своеобразное состояние организма, когда он замирает в неподвижности. Все животные и человек чередуют бодрствование со сном. Примерно треть своей жизни человек проводит во сне. Суточный ритм смены сна и бодрствования подчинил себе основные функции организма и его изменения связаны с трудной перестройкой их периодичности. Состояния, подобные сну, имеющие приспособительное значение, наблюдаются в жизни животных и могут быть вызваны при особых условиях и у человека, хотя они имеют иную природу.

 

Эволюция сна животных

 

Периодическая смена деятельности и покоя наблюдается у всех живых существ. Однако под сном принято понимать совершенно определенное явление. Сон как специфическое состояние нервных механизмов характеризуется типичной электрической активностью структур мозга, неподвижностью и угнетением тонической иннервации мускулатуры, торможением дыхания, сердечной деятельности и ряда вегетативных функций. В наиболее четком виде все эти характеристики сна проявляются лишь у высших животных и человека. Очень трудно их оценить в поведении низших животных, особенно беспозвоночных, у которых само понятие сна приобретает иной смысл.

Сон рыб. Сон рыб зависит от их экологии. Так, ночные хищники спят большую часть дня и охотятся ночью, однако сон их своеобразен. Например, карликовый сомик и ночью, временами впадая в «сонное» состояние, остается неподвижным, сердечные сокращения замедляются, но тонус мускулатуры — напряженный. Это состояние обозначили как «ночной покой» в отличие от «дневного покоя». Однако по показателям частоты сердечных сокращений дневной покой этого ночного хищника оказался более глубоким, чем ночной (соответственно 26 и 36 сокращений сердца/мин при 48 сокращениях при бодрствовании). Дыхание также становилось гораздо реже при дневном покое (15 вдохов/мин), чем при ночном покое (34 вдохов/мин), при гораздо более частом дыхании в состоянии бодрствования (68 вдохов/мин). Учет сравнительной длительности бодрствования и покоя карликового сомика при круглосуточной естественной освещенности показал сходные результаты (рис. 38), что свидетельствует о наличии у него внутреннего ритма смены бодрствования и покоя.

 

Рис. 38. Средняя длительность бодрствования (1), дневного покоя (2) и ночного покоя (3) в разное время суток у карликового сомика при непрерывном свете (А) и естественной освещенности (Б) (по И.Г. Кармановой)

 

 

Другой характер суточной периодики поведения наблюдали у рыб, питающихся в дневное время. Например, у кефали урежение сердечных сокращений во время ночного покоя более выражено, чем во время дневного. Однако смена покоя и бодрствования не сопровождается у рыб характерными изменениями электрической активности мозга, которые проявляются у птиц и млекопитающих и свидетельствуют о развитии в высших отделах нервной системы определенных стадий процессов сонного торможения. Поэтому такие состояния покоя у низших позвоночных предшествующие в эволюции сну высших животных, получили название первичного сна.

Сон амфибий. У амфибий суточное распределение бодрствования и покоя нерегулярно и имеет резко выраженные экологические различия. Так, у травяной лягушки, ведущей ночной образ жизни, днем преобладает состояние покоя с урежением сердечных сокращений. У озерной лягушки, подстерегающей добычу 80–90 % времени суток занимает состояние неподвижности, которое внешне является покоем, но без потери мышечного тонуса и урежения сердечных сокращений, чем отличается от истинного сноподобного покоя. Вместе с тем у амфибий можно наблюдать периоды более глубокого торможения, которые сменяются фазическими движениями, сопровождающимися быстрыми колебаниями электрических потенциалов в крыше среднего и отделах переднего мозга.

Сон рептилий. У рептилий суточная периодичность смены бодрствования и покоя становится более четкой. Например, болотная черепаха днем бодрствует или находится в состоянии дневного покоя (рис. 39). Однако дневной покой черепахи выражается лишь в неподвижности при открытых глазах, сохранении мышечного тонуса и способности к ориентировочным реакциям. Зато ночной покой характеризуется углублением состояния общего торможения, расслаблением мускулатуры при закрытых глазах. При этом в структурах головного мозга появляются медленные колебания потенциалов в диапазоне 3–7 Гц, сходные с «сонными потенциалами» высших животных.

 

Рис. 39. Суточная периодика бодрствования (а), дневного покоя (б) и сна (в) у болотной черепахи (по И.Г. Кармановой)

 

 

Сон птиц. Птицам свойственна четкая определенность суточной периодики смены сна и бодрствования, зависящей от условий их жизни. Так, у типичных дневных птиц — кур — бодрствование днем занимает 33 % времени суток, хотя и перемежается периодами дневного покоя (18 % суточного времени). При этом курица неподвижна, с открытыми глазами, сохраняет мышечный тонус и может реагировать ориентировочной реакцией на слабые раздражители. Ночной покой кур, по наблюдениям, длится 49 % времени суток. В это время куры с закрытыми глазами, расслабив мускулатуру, погружаются в состояние общего торможения. По показателям поведения, вегетативных реакций и электрических потенциалов мозга это истинный сон в том виде, в каком он проявляется у высших животных.

У птиц впервые четко обнаружено по показателям электрической активности мозга деление ночного сна на так называемую медленноволновую стадию (МС) и парадоксальную (ПС) стадию, занимающие соответственно 44 и 5 % суточного времени. Эти стадии сна, резко отличающиеся друг от друга характером электрической активности мозга, состоянием мышечных и вегетативных функций, будут подробно рассмотрены при описании сна человека. На рис. 40 показано распределение времени бодрствования, дневного покоя и ночного сна в течение суток наблюдения за поведением кур.

 

Рис. 40. Суточная периодика бодрствования (а), дневного покоя (б), парадоксальной (в) и медленноволновой (г) стадий сна у кур (по И.Г. Кармановой)

 

 

Типичные ночные птицы — совы — спят днем и бодрствуют ночью. По некоторым наблюдениям, время их бодрствования составляет 47 % общего времени суток. В дневном сне МС занимает 25 %, а ПС —3 % времени суток. Однако кроме активного сна у сов наблюдаются и периоды дневного покоя, составляющие 25 % времени суток. По своим проявлениям дневной покой совы, застывшей с открытыми глазами, напоминает каталептическое состояние (в это время экспериментатор мог брать сову за клюв и придавать ее голове неестественное положение, которое длительно сохранялось).

Сон млекопитающих. Эволюция приспособительного поведения животных привела на уровне теплокровных к регулярному чередованию бодрствования и покоя, принявшего форму глубокого сонного торможения. При этом происходило усложнение структуры сна у разных животных в соответствии с видовыми особенностями их образа жизни. Четко разграничились МС и ПС сна. Существуют данные о том, что у дельфинов медленные дельта-волны могут возникать лишь в каком-либо одном полушарии, а в другом сохраняются альфа-подобные волны, свойственные состоянию бодрствования. Это позволило предположить, что дельфины «спят одним из полушарий». Высокой степени тонкого приспособления достигла организация смены сна и бодрствования у хищных в связи с их охотой. Общеизвестна способность кошки засыпать и просыпаться многократно на протяжении сравнительно небольшого отрезка времени.

Сон человека. Сон человека — это состояние избирательного торможения процессов высшей нервной деятельности, которое возникало как защитная неподвижность в ночное время, сформировало нейрогуморальные механизмы регулирования смены сна и бодрствования и подчинило своему суточному ритму все функции организма вплоть до обмена веществ. Время сна дифференцировано на МС и ПС главным образом для пластических репарационных процессов, обработки накопившейся информации и консолидации долговременной памяти.

Суточный ритм жизни человека сложился из активной деятельности днем и глубокого сна ночью. Современный человек спит в среднем 7–8 ч/сут. Однако с возрастом продолжительность сна меняется. Так, новорожденный ребенок, кроме времени кормления, спит непрерывно. В возрасте 3–5 месяцев он спит уже только 17–18 ч, а к 2–3 годам жизни время сна уменьшается примерно до 12 ч/сут. Нормальная для взрослого человека продолжительность сна 7–8 ч/сут устанавливается к 15–18 годам жизни. В старческом возрасте обычно спят меньше. Вместе с тем длительность сна может быть различна у разных людей. Из жизнеописания Петра Первого следует, что он спал не более 5–6 ч, и этого было ему достаточно. Описаны также многочисленные случаи, когда человек довольствовался еще более ограниченным временем сна.

С наступлением сна расслабляется вся мускулатура. Однако это происходит в известной последовательности. Когда человека одолевает сон, он начинает, как говорят, «клевать носом», так как мышцы шеи, поддерживающие голову, постепенно теряют свой тонус. Затем расслабляются мышцы, сохраняющие позу и положение тела. Поэтому человек спит лежа, когда все его мышцы максимально расслаблены. При этом тормозятся и некоторые вегетативные функции: замедляются сердечные сокращения, снижается артериальное кровяное давление, становится более редким дыхание, уменьшаются траты энергии в организме. В то же время усиливается секреция желудочных и кишечных желез, более интенсивно идет всасывание, активируются многие синтетические процессы.

Динамику электрической активности мозга в процессе развития и течения сна у человека изучали многие исследователи. Была предложена классификация стадий сна на основе изменения уровня сознания и формы электроэнцефалограммы (А. Лумис и др., 1937). К описанным стадиям затем добавили стадию «быстрых движений глаз», названную стадией REM (от англ. rapid eye movement) (В. Демент, Н. Клайтман, 1957) и более известную под названием парадоксальной стадии сна (М. Жуве, 1967). На рис. 41 показаны основные стадии развития естественного сна у человека.

 

Рис. 41. Изменения электроэнцефалограммы человека при развитии сна, объяснения см. в тексте (по А.Н. Шеповальникову)

 

 

Стадия A — исходная для засыпания, преобладает альфа-ритм (8–12 колебаний/с), характерный для состояния спокойного бодрствования, который прерывается десинхронизацией, отражающей напряжение внимания. Стадия B — сонливость, преобладают низковольтные колебания разной частоты. Стадия C — поверхностный сон, в электрической активности мозга появляются веретенообразные группы колебаний 12–14 колебаний/с и отдельные медленные волны. Стадия D — углубление сна, появляются гигантские (200–300 мкВ) медленные волны дельта-ритма (1–3 колебаний/с). Стадия E — глубокий сон, непрерывные ряды медленных волн дельта-ритма. Стадия P (парадоксальная) — глубокий сон, сопровождаемый вздрагиваниями, движениями глазных яблок, сновидениями; в электроэнцефалограмме — десинхронизация, напоминающая реакции внимания при бодрствовании, но более высокой частоты (до 40 колебаний/с).

Стадии D и E обозначают как период МС, а стадию Р — как период ПС. В течение ночи глубина сна может многократно меняться. Соответственно стадии сна будут сменять друг друга при выходе из глубокого сна в обратном порядке, а при следующем его углублении — в обычной последовательности. Поэтому стадии МС и ПС много раз чередуются. При нормальном 8-часовом ночном сне МС занимает в общей сложности 6,5 ч, а ПС — более 1,5 ч. Распределение МС и ПС сна меняется в зависимости от его длительности, времени засыпания, предшествующей деятельности, степени утомления и других обстоятельств.

У человека также проявляются избирательность порога пробуждения, наличие своеобразных «сторожевых пунктов». Так, мать у постели больного ребенка после бессонных ночей засыпает так крепко, что ее не разбудит ни громкий разговор, ни хлопанье дверью, ни бравурная музыка по радио. Но она мгновенно просыпается, услышав тихий стон ребенка.

В некоторые стадии сна (главным образом, ПС) могут возникать, хотя и в неадекватной, искаженной форме, образы внешнего мира в виде сновидений. Их содержание определяется впечатлениями от пережитых событий, оставивших глубокий след в памяти. При общем торможении высших отделов мозга очаги возбуждения от этих следов становятся источниками частичного растормаживания, вызывая в сознании причудливую смесь бывалого и небывалого. Например, пережившему автомобильную катастрофу часто будут сниться столкновение машин, милиционеры и толпы любопытных, а разлученному с любимой будет являться во сне ее образ. В сновидении могут возникать картины событий, возможность которых тревожила человека подсознательно. Например, сын, беспокоящийся о живущей в другом городе матери, видит сон, что она умерла и потом узнает, что это действительно случилось. Так сбываются «вещие» сны, они имеют вполне реальные основания.

В сновидениях отражаются прошлая жизнь человека и его переживания (З. Фрейд, 1933). Анализ снов 21 студента, разбуженных в период ПС, показал, что содержание почти всех сновидений основывалось на пережитом (Дж. Матсумото, 1985).

Другим источником сновидений могут быть текущие ощущения. Например, человеку приснилось, что он пошел в дальний поход, переходил замерзшую реку, провалился под лед и ноги оказались в ледяной воде. В действительности у него с ног сползло одеяло. В этом и других случаях проявляется удивительное свойство сновидений за кратчайший срок пронести в сонном сознании человека фантастические события, развивающиеся в течение длительного времени. Об этом очень наглядно свидетельствует пример, приведенный одним французским исследователем, который спал в постели под пологом, подвешенным на палке. Ему приснился длинный сон о том, как его схватили, судили, приговорили к смерти, привели к гильотине, положили голову на плаху, нож гильотины упал на шею... и он проснулся, разбуженный ударом по шее сорвавшейся палкой полога. За мгновенье, прошедшее от удара до пробуждения, в его мыслях пронеслись все события этого сновидения.

О связи сновидений с бывшими впечатлениями убедительно свидетельствует тот факт, что в своих снах слепорожденные не видят зрительных сцен, а глухорожденные не слышат голосов и звуков.

 

Нейрофизиология сна

 

Все показатели поведения и состояния большинства других функций организма указывают на то, что сон представляет собой в нейрофизиологическом понимании разлитое торможение процессов высшей нервной деятельности, особенно выраженное в коре больших полушарий головного мозга. Условиями его развития могут быть торможение в результате ограничения афферентации и условное торможение на время суток («пассивный» и «активный» сон, по И.П. Павлову, 1932), охранительное торможение, вызываемое утомлением корковых клеток, торможение под действием специфических медиаторов, безусловно-рефлекторное торможение в процессе инстинктивного поведения.

О последовательности охвата торможением мозговых структур можно судить по тому, как при засыпании сначала теряется ясность мышления, затем исчезает сознание, потом расслабляется мускулатура и наконец снижается деятельность вегетативных органов. Если рассматривать развитие и распространение процессов торможения по электрическим проявлениям медленноволновой стадии сна — «сонным потенциалам» (дельта-волны), то, как видно из рис. 42, при естественном засыпании кошки торможение возникает вначале в лобных областях коры, потом распространяется на ее теменные и затылочные области, а затем спускается в подкорковые и стволовые структуры мозга. По-видимому, ведущая роль лобных областей коры больших полушарий у кошки в развитии «сонных потенциалов», как и в генерации фоновой ритмики, определяется тем, что они имеют более тесные связи с восходящими неспецифическими системами мозга. Однако у человека, мозг которого организован так, что его фоновая ритмика наиболее выражена в затылочных областях коры, развитие «сонных потенциалов» начинается именно из них.

 

Рис. 42. Распространение дельта-волн по поверхности коры мозга кошки при развитии сна (по А.Б. Когану): I —дельта-волны возникают в передних отделах коры, II — распространяются на теменные отделы, III — охватывают всю поверхность коры, IV — развивается противофазность волн передних и задних отделов коры, V — восстанавливается их синфазность

 

 

Послойный анализ электрической активности коры мозга кролика показал, что источником дельта-волн во время наркотического сна являются тела пирамидных нейронов V слоя. Одновременная запись потенциалов всех шести слоев сенсомоторной коры мозга кошки во время ее естественного засыпания выявила определенную последовательность развития в них тормозного процесса (рис. 43).

 

Рис. 43. Распространение дельта-волн по слоям коры мозга кошки (I—VI) при развитии сна (по Г.Л. Фельдману, Э.И. Ульяницкой):

а — сонливость, б — поверхностный сон, в — глубокий сон

 

 

Уже на стадии сонливости (В) в глубоких слоях появляются небольшие дельта-волны. На стадии углубления сна дельта-волны увеличиваются в глубоких слоях и распространяются на средние, а в верхних слоях возникают «сонные веретена». Лишь на стадии глубокого сна (E) гигантские дельта-волны регистрируются во всех слоях коры. Следовательно, тормозной процесс вначале охватывает эфферентные выходные структуры коры, а затем распространяется на ее афферентные входные структуры.

Нейрофизиологический механизм сна постепенно раскрывался по мере накопления фактов о естественных и искусственных условиях его возникновения. Сведения о том, что утомленный человек быстрее засыпает и крепче спит, указывали на возможную связь деятельности мозга с состоянием гуморальных систем. Патологические изменения нервной ткани в области начала сильвиева водопровода при «сонной болезни» — летаргическом энцефалите (И. Маутнер, 1820) показали, что центры мозгового ствола могут иметь отношение к явлениям сна. В лаборатории создателя учения об условных рефлексах — И.П. Павлова сон вызывали у собак сигналами условного торможения, развивающегося в высших отделах мозга.

Вместе с тем оказалось, что раздражением некоторых структур промежуточного мозга у кошек можно вызвать полную картину естественного сна. В экспериментах с перерезками ствола мозга на разном уровне наблюдали сохранение электрокортикограммы, характерной для бодрствования, если разрез был ниже продолговатого мозга, и развитие «сонных потенциалов», когда он был выше среднего мозга. Наконец, прямым раздражением ретикулярной формации среднего мозга было показано ее активирующее действие на высшие отделы мозга (Д. Моруцци, Г. Мэгун, 1949). Прекращение этого действия погружает животное в сон, а его возобновление вызывает «реакцию пробуждения». Наряду с активирующей системой, десинхронизирующей электрокортикограмму, были обнаружены стволовые гипногенные системы, которые при низкочастотном раздражении синхронизируют электрокортикограмму и приводят к состоянию сна. К ним относятся базальные отделы переднего мозга, медиальные структуры таламуса, некоторые структуры хвостатого ядра продолговатого мозга, гиппокампа и гипоталамуса. Раздражение дорсомедиальных отделов варолиева моста вызывает возникновение парадоксальной стадии сна, а повреждение ядер шва создает бессонницу.

Исследование процессов сонного торможения на нейронном уровне показало, что при этом не происходит общего затормаживания всех корковых нейронов. Часть нейронов действительно замедляет свою фоновую импульсацию, но другая часть — учащает. Такие неоднозначные изменения частоты импульсов нейронов при развитии сна наблюдали также в гиппокампе, таламусе и других подкорковых и стволовых структурах мозга. Отсюда следует, что сонное торможение создается определенной организацией возбуждающихся и тормозящихся нейронов. Эта организация обнаружила следующие характерные особенности поведения корковых нейронов в разные стадии сна.

1. При подсчете средней частоты фоновой импульсации всех нейронов, как замедляющих, так и учащающих свой разряд, выяснили, что при МС средняя частота разряда уменьшается по сравнению с бодрствованием, а при ПС увеличивается, превышая уровень бодрствования. Например, расчет для случайной выборки 300 нейронов показал динамику средней частоты их импульсов при бодрствовании 9,5 имп/с, при МС 7,9 имп/с, при ПС 10,9 имп/с. При этом нейроны, замедляющие импульсы в МС, оказались разряжающимися с относительно высокой частотой при бодрствовании, а клетки, работавшие при бодрствовании с относительно низкой частотой в МС, учащали свои импульсы. Существуют указания, что в моторной коре кошки длинноаксонные пирамидные нейроны снижают частоту импульсов при засыпании, а короткоаксонные — учащают. При переходе к ПС нейроны, учащавшие в МС свою импульсацию, начинают ее замедлять, а замедлявшие — резко учащать; и так как их большинство, то интенсивность импульсных потоков в ПС превышает таковую в состоянии бодрствования.

2. Перестраивается структура импульсных потоков. Непрерывно-ритмическое следование импульсов в состоянии бодрствования при переходе к МС сменяется их группированием в пачки, а при наступлении ПС следует частичное возвращение к непрерывно-аритмическому типу импульсации (рис. 44). Результаты анализа 900 отрезков записи фоновой активности корковых нейронов, каждого при состоянии бодрствования животного, во время МС и ПС представлены в табл. 8.

 

Рис. 44. Фоновая импульсация нейронов теменной коры мозга кошки в состоянии бодрствования (А), медленноволнового сна (Б) и парадоксального сна, прерываемого пробуждением (В):

1 — импульсная активность, 2 — электрокортикограмма, 3 — состояния животного (бодрствование — сплошная линия, сон — пунктир)

 

 

Таблица 8. Распределение различной структуры импульсных потоков теменной коры кошки в разные стадии сна, %

 

Во время МС каждая пачка объединяет 5–15 импульсов с интервалами молчания между пачками 200–500 мс. Такое формирование структуры импульсного потока характерно для влияний восходящей неспецифической таламокортикальной системы, приводящих к развитию тормозных процессов в коре. Во время ПС большинство нейронов возвращается к непрерывно-аритмическому типу фоновой импульсации. Однако часть нейронов сохраняет ее пачечно-групповую структуру, т.е. в этой стадии возникает некоторое разделение возбуждающих и тормозящих механизмов корковой деятельности.

3. Исследование взаимосвязи импульсации корковых нейронов ползало, что в медленноволновой стадии она резко усиливается, повышается синхронизация импульсных потоков нейронов, находящихся не только близко друг от друга, но и на таком расстоянии, при котором синхронизация их импульсации при бодрствовании была незначительной; в парадоксальной стадии она снова становится незначимой (табл. 9).

 

Таблица 9. Взаимосвязь импульсных потоков (по коэффициентам корреляции) разноудаленных нейронов теменной коры мозга кошки в разные стадии сна

 

Такая синхронность разрядов обширных популяций нейронов, видимо, также обусловлена диффузными влияниями восходящей таламокортикальной системы, организующей развитие процессов сонного торможения. Этим объясняется и то, что возникающие в МС пачки импульсов оказываются приуроченными к фазам дельта-волн. Аналогичные изменения корреляции импульсные разрядов корковых нейронов наблюдались при раздражении неспецифических структур таламуса, приводящем к возникновению веретен. При переходе к ПС таламические влияния ослабевают и усиливается активность структур среднего мозга.

4. При испытании реактивности нейронов теменной коры кошки оказалось, что в ответах на афферентное (слуховое, зрительное, тактильное) и в меньшей степени на прямое раздражение таламической радиации в медленноволновой и парадоксальной стадиях прогрессивно уменьшается число нейронов, реагирующих как возбуждением, так и торможением (табл. 10).

 

Таблица 10. Динамика реактивности корковых нейронов в процессе развития сна

 

Существует некоторое различие в динамике ответов на афферентные раздражения и прямую стимуляцию входных в кору путей, в частности практически неизменный высокий процент заторможенных нейронов в одном случае и сравнительно малое число нереагирующих — в другом. Эти различия могут указывать на то, что развитие сна затрагивает и специфические релейные ядра таламуса, затрудняя прохождение через них афферентных сигналов. Нейроны, реагировавшие возбуждением при бодрствовании животного, могли при развитии сна не только перестать возбуждаться, но и начинали реагировать торможением. Примечательно, что в стадии МС уменьшается вариабельность импульсных реакций нейронов на раздражения, что можно объяснить как результат резкого ограничения полисенсорного реагирования.

5. Построение гистограмм распределения величин латентных периодов импульсных ответов раздельно для их значений менее и более 5 мс выявило, что прогрессирующее в МС и ПС уменьшение средней величины латентного периода импульсных ответов происходит не за счет ускорения проведения импульсов, а в результате уменьшения доли длиннолатентных реакций при неизменности коротколатентных. Если при бодрствовании последние составляли менее трети всех тветов, то в период ПС их было больше половины. Сон упрощает путь движения нервных процессов в коре.

6. Возникающий в ответ на раздражение сложный узор мозаики активности элементарных нейронных ансамблей с наступлением сна претерпевает глубокие изменения. В период МС функциональная мозаика элементарных нейронных ансамблей становится более грубой ввиду размывания границ между ними, приводящему к их слиянию, а в ПС происходит лишь некоторый сдвиг в сторону восстановления структуры мозаики.

Это наглядно показывает математическая реконструкция мозаик активности нейронов, построенная по данным одновременной мультиэлектродной регистрации нейронных реакций методом поэтапной оптимизации. При этом во время МС микроочаги возбуждающихся нейронов, ранее разделенные тормозящимися, сливаются между собой, образуя массивные зоны возбуждения наряду с массивами тормозящихся нейронов. В период ПС эти массивы дробятся, но не достигают степени дробности, характерной для состояния бодрствования.

7. Если считать, что нейроны передают информацию потоками импульсов, то можно попытаться оценить их информационную деятельность в понятиях теории информации, разработанной для технических систем связи (К. Шеннон, 1963). Результаты такой оценки представлены в табл. 11.

 

Таблица 11. Информационные характеристики импульсной активности нейронов теменной коры мозга кошки в разные фазы сна

 

В медленноволновую стадию по сравнению с состоянием бодрствования количество и особенно скорость передачи информации уменьшаются, хотя избыточность канала связи резко возрастает, а в парадоксальную стадию эти показатели вновь увеличиваются, превышая по пропускной способности наблюдавшиеся при бодрствовании. По-видимому, при засыпании выключаются некоторые источники потоков информации и нейронные каналы связи оказываются недозагруженными, что и обусловливает увеличение избыточности. Возрастание пропускной способности нервных каналов связи при переходе к ПС может отражать их мобилизацию для передачи информации, необходимой для деятельности, осуществляемой в эту стадию сна.

Все перечисленные особенности поведения корковых нейронов в разные стадии сна дают основание судить о нейрофизиологических механизмах его развития на нейронном уровне. Так, выключаемые из деятельности при засыпании нейроны, которые характеризуются полимодальностью, длинным латентным периодом и вариабельностью реакции, а также высокой частотой импульсации и повышенной возбудимостью, очевидно, имеют наиболее близкое отношение к осуществлению высших функций мозга. Можно предположить, что с их выключением связана потеря способности к активному восприятию окружающего и утрата сознания. Ограничение других функций мозга, возможно, обусловлено снижением возбудимости нейронов, замедляющих свои разряды, уменьшением информативности передаваемых сигналов, огрублением рабочих мозаик нейронной активности и перестройкой структуры импульсных потоков с преобладанием пачечного типа, характерного для восходящих таламокортикальных тормозных влияний.

Восстановление показателей нейронной активности в период ПС имело частичный характер. Можно предполагать, что это восстановление отражает растормаживание нейронных механизмов, имеющих отношение к явлениям, специфическим для ПС, как, например, быстрым движениям глаз или возникновениям сновидений. Однако для такого разграничения имеющихся сведений недостаточно, их могут дать дальнейшие исследования.

На рис. 45 приведена сводная схема расположения в структурах мозга систем, участвующих в регуляции уровня бодрствования и глубины сна. В соответствии с этой схемой последовательное включение нейрогуморальных механизмов, обусловливающих засыпание, смены стадий сна и пробуждение, можно представить по сигналам наступления темноты, прекращения деятельности и обстановки приготовления ко сну.

 

Рис. 45. Структуры мозга, участвующие в регуляции уровня бодрствования и глубины сна (по А.Н. Шеповальникову):

1 — синхронизирующая бульбарная система, 2 — «дополнительная» бульварная система, 3 — мостовой комплекс, обеспечивающий парадоксальный сон, 4 — активирующая ретикулярная формация ствола мозга, 5 — синхронизирующая таламическая система, 6 — активирующие влияния гипоталамуса на структуры ствола мозга, 7 — базальная синхронизирующая область, 8 — активирующие влияния гипоталамуса на структуры коры, 9 — облегчающее влияние высокочастотной стимуляции интраламинарных ядер таламуса на ретикулярную систему, 10 — влияния лимбической системы, способствующей сну, 11 — облегчающие и угнетающие влияния коры мозга на ретикулярную систему; I—V — уровни перерезок мозгового ствола при изучении нервных механизмов сна; знаком «+» обозначено активирующее действие, знаком «&#8722;» — угнетающее

 

 

Условное и безусловное торможение, которое развивается на фоне изменения активности гормонов и метаболизма, а также ограничение сенсорной информации и умеренное утомление обусловливают угнетение внешней деятельности путем ослабления влияния активирующих десинхронизирующих систем (рис. 45, 4, 6, 9, 11 ). Начинается засыпание.

Снижение тонуса активирующих систем помогает выявлению развивающейся к этому времени деятельности гипногенных синхронизирующих систем (рис. 45, 1, 2, 5, 7, 10 ). Гипоталамус оказывает трофотропное влияние на структуры ствола. В процесс вовлекается хвостатое ядро и утрачивается способность к активным движениям, блокируется поступление сенсорной информации. В нервных клетках ствола мозга, особенно в области синхронизирующей бульбарной системы, накапливается серотонин. Развивается медленноволновый сон.

Нарастающая на протяжении десятков минут медленноволнового сна деятельность гипногенных систем достигает степени, при которой (пока неясно, каким образом) происходит быстрый переход к активами центров дорсомедиальных отделов моста (рис. 45, 3 ), обусловливающих десинхронизацию в коре без участия ретикулярной формации среднего мозга. В соответствующих отделах мозга усиливается обмен веществ и повышается температура. Частичная активизация коры и ее связи с лимбической системой создают условия для появления сновидений. В структурах ствола мозга накапливается норадреналин и уменьшается серотонин. Возникает парадоксальный сон.

Активность нейрогуморальных механизмов парадоксального сна постепенно уменьшается и может на протяжении нескольких минут снизиться настолько, что усилившиеся за это время влияния гипногенных систем вызовут быструю обратную перестройку деятельности мозга в состояние медленноволнового сна. Однако это состояние, хотя и более продолжительное, чем состояние парадоксального сна, через некоторое время снова сменится им. Такое циклическое чередование стадий сна длится всю ночь, причем к утру продолжительность стадий парадоксального сна обычно возрастает.

С утренним рассветом связаны такие изменения активности гормонов и обмена веществ, которые в суточной периодике означают переход к активной внешней деятельности в светлое время. Под влиянием этих изменений, а также нарастающих потоков сенсорной информации и завершения восстановительных процессов в накануне работавших до утомления структурах мозга происходит снижение тонуса гипногенных систем, что благоприятствует резкому возрастанию деятельности активирующих систем, особенно десинхронизирующего действия ретикулярной формации среднего мозга. Наступает пробуждение.

В разные стадии сна по-разному протекают процессы высшей нервной деятельности. Так, выработанная на словесную инструкцию двигательная реакция сжатия руки в кулак сопровождалась изменениями ЭЭГ и ЭМГ, наиболее выраженными в ПС. Описаны нарушения памяти при устранении ПС. Однако приводятся доказательства того, что этим не исключается консолидация долгосрочной памяти при выработке реакций пассивного избегания.

В управлении сном принимает участие наряду с нервной гуморальная регуляция. Из аминокислотных остатков выделен дельта-пептид сна, вызывающий дельта-волны и характерный для МС (М. Монье, Г. Шененбергер, 1975). Из мозга животных, лишенных сна, выделен фактор S, увеличивающий продолжительность МС. В опытах на животных и в наблюдениях на людях показана роль серотонина и норадреналина в процессах сна. На основе этих данных предложен следующий механизм развития и прекращения сна: подавление симпатической активности приводит к поверхностному сну, расходование серотонина соответствует глубокому МС, расходование норадреналина — ПС, возбуждение симпатической активности вызывает пробуждение.

 

Дата: 2018-12-28, просмотров: 254.