Взаимодействие g-излучения с веществом
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

g-излучение - фотонное, косвенно ионизирующее излучение.

Масса покоя кванта = 0. Скорость с = 3·1010 см/с

Энергия и длина волны:

1. g-кванты (переход между уровнями ядра, дискретный спектр)

Eg от нескольких кэВ до ~ 6,0 МэВ; lE=10 кэВ = 1,2 Å; lE=2 МэВ= 6,2·10-3 Å

2. Характеристические рентгеновские кванты (электронные переходы, дискретный спектр)

Ex от нескольких сотен эВ до ~ 100÷120 кэВ; lх от 103 Å до 6·10-2 Å

3. Тормозное излучение (преобразование энергии b–частиц; непрерывный спектр)

Верхняя граница EТ определяется Eb,max.

Механизмы передачи энергии

Энергия g-квантов, испускание которых сопровождает ядерные превращения подавляющего большинства радионуклидов, определяется дискретными уровнями возбужденных ядер и составляет, как правило, от ~ 10 кэВ до ~ 6 МэВ. Для электромагнитных квантов (фотонов), имеющих такую энергию, основными первичными процессами взаимодействия с веществом являются фотопоглощение, комптоновское рассеяние и образование пар электрон-позитрон (рис. 3.16). При этом часть энергии преобразуется в энергию заряженных частиц, часть – во вторичное фотонное излучение.

Фотопоглощение (фотоэффект) – процесс передачи всей энергии g-кванта электрону, как правило, К-оболочки атома облучаемого вещества. При этом электрон (фотоэлектрон) выбрасывается из атома, его кинетическая энергия (Еф) равна разности между энергией фотона и энергией связи в атоме (EK): Еф = Eγ−EK.

Рассмотрение законов сохранения энергии и импульса показывает, что фотоэффект невозможен на свободном электроне. Вероятность фотоэффекта существенно возрастает по мере увеличения энергии связи электрона в атоме. Когда энергия фотона достаточна для ионизации К-оболочки (Eγ > EK), то вероятность фотоэффекта на К-оболочке выше, чем на L-оболочке и M-оболочке примерно в 5 и в 20 раз, соответственно. Очевидно, что при Eγ< EK фотоэффект возможен только на L-, M-,… и т.д. оболочках.

Вакансия, образовавшаяся на К-оболочке, заполняется электроном с одного из находящихся выше уровней, например, LI (рис. 3.17). Выделяющаяся при этом энергия (EK−ELI) может быть либо рассеяна в виде рентгеновского кванта (EX = EK−ELI), либо передана другому электрону, например, LII-оболочки. Этот электрон покинет атом, т.к. EK−ELI>ELII. В этом заключается эффект Оже. Каскадное размножение «дырок» после первого оже-перехода происходит до тех пор, пока они не переместятся во внешние оболочки. Таким образом, фотоэффект сопровождается либо испусканием характеристических рентгеновских квантов, либо каскадом безизлучательных переходов. Вероятность испускания оже-электронов увеличивается с уменьшением Z, и для легких атомов (Z<30) она выше вероятности рентгеновской флуоресценции.

Комптоновское рассеяние– передача части энергии g-квантов электронам внешних оболочек. Энергия связи этих электронов пренебрежимо мала по сравнению с Eγ и рассеяние трактуется как столкновение фотона с отдельным свободным электроном. В результате электрон покидает атом, а новый γ-квант с энергией hν′=Eγ′ отклоняется от направления движения первичного кванта (рис. 3.13б, 0º<θ£180º). Энергия рассеянного кванта изменяется в соответствии с (3.21)

Классическое или томсоновское рассеяние. Эффект Комптона не существенен для мягкого (длинноволнового) излучения. Однако следует отметить, что γ-излучение (как и рентгеновское) может рассеиваться и без изменения длины волны: фотон поглощается и немедленного испускается атомом без изменения энергии, но в другом направлении. Рассеяние излучения без передачи энергии облучаемому веществу называют классическим или томсоновским. Оно возможно, когда энергия фотона недостаточна для вырывания электрона из атома, и впервые наблюдалось для мягкого рентгеновского излучения (λ≈10−8 см, Е ≤ 10 кэВ). Его источником являются связанные электроны атома, которые приходят в резонансные колебания под действием падающего излучения и вследствие этого сами становятся излучателями квантов такой же частоты.

Образование пар электрон-позитрон– взаимодействиевысокоэнергетических g-квантов с полем ядер, приводящее к исчезновению квантов и образованию заряженных частиц. Пороговая энергия процесса равна удвоенной энергии массы покоя электрона (1022 кэВ), а кинетическая энергия частиц Ee- = Ee+= (Eγ-1022)/2. Последующая аннигиляция позитрона приводит к появлению двух квантов с энергией по 511 кэВ каждый, которые, в свою очередь, могут поглотиться веществом по механизму фотоэффекта или рассеяться на электронах. Сечение образования пар (c) пропорционально Z2 и растет с увеличением Eγ. В интервале 2550 <Eγ <25000 кэВ значение cµ Z2∙lnEγ

 

 

Дата: 2018-12-21, просмотров: 361.