Испускание и поглощение света атомами
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Согласно постулатам Бора электрон может находиться на нескольких определенных орбитах. Каждой орбите электрона соответствует определенная энергия. При переходе электрона с ближней на дальнюю орбиту атомная система поглощает квант энергии. При переходе с более удаленной орбиты электрона на ближнюю орбиту по отношению к ядру, атомная система излучает квант энергии.

Спектры

Теория Бора позволила объяснить существование линейчатых спектров.
Формула (1) даёт качественное представление о том, почему атомные спектры испускания и поглощения являются линейчатыми. В самом деле, атом может излучать волны лишь тех частот, которые соответствуют разностям значений энергии E 1 , E 2 , . . . , E n , . . Вот поэтому спектр излучения атомов состоит из отдельно расположенных резких ярких линий. Вместе с тем, атом может поглотить не любой фотон, а только тот, энергия которого в точности равна разности E nE k каких-то двух разрешённых значений энергии E n и E k. Переходя в состояние с более высокой энергией E n, атомы поглощают ровно те самые фотоны, которые способны излучить при обратном переходе в исходное состояние E k. Попросту говоря, атомы забирают из непрерывного спектра те линии, которые сами же и излучают; вот почему тёмные линии спектра поглощения холодного атомарного газа находятся как раз в тех местах, где расположены яркие линии спектра испускания этого же газа в нагретом состоянии.

сплошной спектр спектр испускания водорода спектр поглощения водорода

 

Слово «атом» в переводе с греческого означает «неделимый». Под атомом долгое время, вплоть до начала XX в., подразумевали мельчайшие неделимые частицы вещества. К началу XX в. в науке накопилось много фактов, говоривших о сложном строении атомов.

Большие успехи в исследовании строения атомов были достигнуты в опытах английского ученого Эрнеста Резерфорда по рассеянию α-частиц при прохождении через тонкие слои вещества. В этих опытах узкий пучок α-частиц, испускаемых радиоактивным веществом, направлялся на тонкую золотую фольгу. За фольгой помещался экран, способный светиться под ударами быстрых частиц. Было обнаружено, что большинство α-частиц отклоняется от прямолинейного распространения после прохождения фольги, т. е. рассеивается, а некоторые а-частицы вообще отбрасываются назад. Рассеяние α-частиц Резерфорд объяснил тем, что положительный заряд не распределен равномерно в шаре радиусом 10-10м, как предполагали ранее, а сосре-доточен в центральной части атома — атомном ядре. При прохождении около ядра а-частица, имею-щая положительный заряд, отталкивается от него, а при попадании в ядро — отбрасывается в противоположном направлении. Так ведут себя частицы, имеющие одинаковый заряд, следовательно, существует центральная положительно заряженная часть атома, в которой сосредоточена значительная масса атома. Расчеты показали, что для объяснения опытов нужно принять радиус атомного ядра равным примерно 10-15 м.

Резерфорд предположил, что атом устроен подобно планетарной системе. Суть модели строения атома по Резерфорду заключается в следующем: в центре атома находится положительно заряженное ядро, в котором сосредоточена вся масса, вокруг ядра по круговым орбитам на больших расстояниях вращаются электроны (как планеты вокруг Солнца). Заряд ядра совпадает с номером химического элемента в таблице Менделеева.

Планетарная модель строения атома по Резерфорду не смогла объяснить ряд известных фактов: электрон, имеющий заряд, должен за счет кулонов-ских сил притяжения упасть на ядро, а атом — это устойчивая система; при движении по круговой орбите, приближаясь к ядру, электрон в атоме должен излучать электромагнитные волны всевозможных частот, т. е. излучаемый свет должен иметь непрерывный спектр, на практике же получается иное: электроны атомов излучают свет, имеющий линейчатый спектр. Разрешить противоречия планетарной ядерной модели строения атома первым попытался датский физик Ни лье Бор.

В основу своей теории Бор положил два постулата. Первый постулат: атомная система может находиться только в особых стационарных или квантовых состояниях, каждому из которых соответствует своя энергия; в стационарном состоянии атом не излучает Это означает, что электрон (например, в атоме водорода) может находиться на нескольких вполне определенных орбитах. Каждой орбите электрона соответствует вполне определенная энергия.

Второй постулат: при переходе из одного стационарного состояния в другое испускается или поглощается квант электромагнитного излучения. Энергия фотона равна разности энергий атома в двух состояниях: , где

h — постоянная Планка.

При переходе электрона с ближней орбиты на более удаленную атомная система поглощает квант энергии. При переходе с более удаленной орбиты электрона на ближнюю орбиту по отношению к ядру атомная система излучает квант энергии.

1. Слово «атом» в переводе с греческого означает «неделимый». Под атомом долгое время, вплоть до начала XX в., подразумевали мельчайшие неделимые частицы вещества. К началу XX в. в науке накопилось много фактов, говоривших о сложном строении атомов.

Большие успехи в исследовании строения атомов были достигнуты в опытах английского ученого Эрнеста Резерфорда по рассеянию а-частиц при прохождении через тонкие слои вещества. В этих опытах узкий пучок а-частиц, испускаемых радиоактивным веществом, направлялся на тонкую золотую фольгу. За фольгой помещался экран, способный светиться под ударами быстрых частиц. Было обнаружено, что большинство а-частиц отклоняется от прямолинейного распространения после прохождения фольги, т. е. рассеивается, а некоторые а-частицы вообще отбрасываются назад. Рассеяние а-частиц Резерфорд объяснил тем, что положительный заряд не распределен равномерно в шаре радиусом 10^~10м, как предполагали ранее, а сосре-доточен в центральной части атома — атомном ядре. При прохождении около ядра а-частица, имею-щая положительный заряд, отталкивается от него, а при попадании в ядро — отбрасывается в противоположном направлении. Так ведут себя частицы, имеющие одинаковый заряд, следовательно, существует центральная положительно заряженная часть атома, в которой сосредоточена значительная масса атома. Расчеты показали, что для объясне-ния опытов нужно принять радиус атомного ядра равным примерно 10^~15 м.

Резерфорд предположил, что атом устроен по-добно планетарной системе. Суть модели строения атома по Резерфорду заключается в следующем: в центре атома находится положительно заряженное ядро, в котором сосредоточена вся масса, вокруг ядра по круговым орбитам на больших расстояниях вращаются электроны (как планеты вокруг Солнца). Заряд ядра совпадает с номером химического элемента в таблице Менделеева.

Планетарная модель строения атома по Резерфорду не смогла объяснить ряд известных фактов: электрон, имеющий заряд, должен за счет кулонов-ских сил притяжения упасть на ядро, а атом — это устойчивая система; при движении по круговой орбите, приближаясь к ядру, электрон в атоме должен излучать электромагнитные волны всевозможных частот, т. е. излучаемый свет должен иметь непрерывный спектр, на практике же получается иное: электроны атомов излучают свет, имеющий линейчатый спектр. Разрешить противоречия планетарной ядерной модели строения атома первым попытался датский физик Ни лье Бор.

В основу своей теории Бор положил два постулата. Первый постулат: атомная система может находиться только в особых стационарных или квантовых состояниях, каждому из которых соответствует своя энергия; в стационарном состоянии атом не излучает Это означает, что электрон (например, в атоме водорода) может находиться на нескольких вполне определенных орбитах. Каждой орбите электрона соответствует вполне определенная энергия.

Второй постулат: при переходе из одного стационарного состояния в другое испускается или поглощается квант электромагнитного излучения. Энергия фотона равна разности энергий атома в двух состояниях: , где

h — постоянная Планка.

При переходе электрона с ближней орбиты на более удаленную атомная система поглощает квант энергии. При переходе с более удаленной орбиты электрона на ближнюю орбиту по отношению к ядру атомная система излучает квант энергии.

В науке очень долго считалось, что Атом – это наименьшая, НЕДЕЛИМАЯ частиц вещества.

1.Первым, кто нарушил эти представления был Томсон: он считал, что атом – это некая положительная субстанция, в которую «как изюминки в кекс» вкраплены электроны. Важность этой теории – то, что атом перестали признавать неделимым
2. Резерфорд поставил опыт по рассеиванию альфа-частиц. Радиоактивным веществом бомбардировались тяжелые элементы (золотая фольга). Резерфорд ожидал увидеть светящиеся круги, а увидел светящиеся кольца.  
Объяснение Резерфорда: в центре атома находится весь положительный заряд, а электроны ни оказывают никакого влияния на поток альфа-частиц.  
3. Планетарная модель атома водорода по БОРУ
-

 

+

Квантовые постулаты Бора: 1. Электрон, вращаясь по стационарной орбите энергии не излучает. 2. Поглощая или излучая энергию электрон соответственно поднимается на более дальнюю о ядра орбиту (уровень), либо опускается на более близкий к ядру уровень.

Поглощение света Вынужденное излучение Спонтанное излучение

Излучая порцию энергии (видимой) атом дает только ему присущий набор длин волн – спектр.

Виды спектров:

1. Спектр излучения (испускания): (дают тела в нагретом состоянии)

а) Сплошной – дают все атомы в твердом, жидком состоянии или плотные газы

б) Линейчатый – дают атомы в газообразном состоянии

1. Спектр поглощения: если через вещество пропустить свет, то это вещество будет поглощать именно те волны, которые излучает в нагретом состоянии (на сплошном спектре появляются темные полоски)

Спектральный анализ – это метод определения химического состава вещества по его спектру излучения или поглощения.

Метод основан на том, что каждому химическому элементу присущ свой набор длин волн.

Применение спектрального анализа: в криминалистике, медицине, в астрофизике.

Спектрограф – это прибор, для проведения спектрального анализа. Спектроскоп отличается от спектрографа тем, что с помощью него можно не просто наблюдать за спектрами, но и сделать фотографический снимок спектра.


Билет №21

1. Термодинамический подход к изучению физических явлений. Внутренняя энергия и способы ее изменения. Первый закон термодинамики. Применение первого закона термодинамики к изотермическому, изохорному и адиабатному процессам.

2. Модели строение атомного ядра; ядерные силы; нуклонная модель ядра; энергия связи ядра; ядерные реакции.

1. Каждое тело имеет вполне определенную структуру, оно состоит из частиц, которые хаотически движутся и взаимодействуют друг с другом, поэтому любое тело обладает внутренней энергией. Внутренняя энергия — это величина, характеризующая собственное состояние тела, т. е. энергия хаотического (теплового) движения микрочастиц системы

(молекул, атомов, электронов, ядер и т. д.) и энергия взаимодействия этих частиц. Внутренняя энергия одноатомного идеального газа определяется по формуле U = 3/2 • т/М • RT.

Внутренняя энергия тела может изменяться только в результате его взаимодействия с другими телами. Существует два способа изменения внутренней энергии: теплопередача и совершение механической работы (например, нагревание при трении или при сжатии, охлаждение при расширении).

Теплопередача — это изменение внутренней энергии без совершения работы: энергия передается от более нагретых тел к менее нагретым. Теплопередача бывает трех видов: теплопроводность (непосредственный обмен энергией между хаотически движущимися частицами взаимодействующих тел или частей одного и того же тела); конвекция (перенос энергии потоками жидкости или газа) и излучение (перенос энергии электромагнитными волнами). Мерой переданной энергии при теплопередаче является количество теплоты (Q).

Эти способы количественно объединены в закон сохранения энергии, который для тепловых процессов читается так: изменение внутренней энергии замкнутой системы равно сумме количества теплоты, переданной системе, и работы внешних сил, совершенной над системой. , где — изменение внутренней энергии, Q — количество теплоты, переданное системе, А — работа внешних сил. Если система сама совершает работу, то ее условно обозначают А*. Тогда закон сохранения энергии для тепловых процессов, который называется первым законом термодинамики, можно записать так: , т.е. количество теплоты, переданное системе, идет на совершение системой работы и изменение ее внутренней энергии.

При изобарном нагревании газ совершает работу над внешними силами , где V1 и V2 — начальный и конечный объемы газа. Если процесс не является изобарным, величина работы может быть определена площадью фигуры ABCD, заключенной между линией, выражающей зависимость p(V), и начальным и конечным объемами газа V

Рассмотрим применение первого закона термодинамики к изопроцессам, происходящим с идеальным газом.

В изотермическом процессе температура постоянная, следовательно, внутренняя энергия не меняется. Тогда уравнение первого закона термодинамики примет вид: , т. е. количество теплоты, переданное системе, идет на совершение работы при изотермическом расширении, именно поэтому температура не изменяется.

В изобарном процессе газ расширяется и количество теплоты, переданное газу, идет на увеличение его внутренней энергии и на совершение им работы: .

При изохорном процессе газ не меняет своего объема, следовательно, работа им не совершается, т. е. А = 0, и уравнение первого закона имеет вид , т. е. переданное количество теплоты идет на увеличение внутренней энергии газа.

Адиабатным называют процесс, протекающий без теплообмена с окружающей средой. Q = 0, следовательно, газ при расширении совершает работу за счет уменьшения его внутренней энергии, следовательно, газ охлаждается, Кривая, изображающая адиабатный процесс, называется адиабатой.
2. Состав ядра атома. Ядерные силы. Дефект массы и энергия связи ядра атома. Ядерные реакции. Ядерная энергетика.

Ядро атома любого вещества состоит из протонов и нейтронов. (Общее название протонов и нейтронов — нуклоны.) Число протонов равно заряду ядра и совпадает с номером элемента в таблице Менделеева. Сумма числа протонов и нейтронов равна массовому числу. Например, ядро атома кислорода состоит из 8 протонов и 16 - 8 = 8 нейтронов. Ядро атома состоит из 92 протонов и 235 - 92 = 143 нейтронов.

Силы, которые удерживают протоны и нейтроны в ядре – называются ядерными силами. Это самый сильный вид взаимодействия.

В 1932 г. английский физик Джеймс Чедвик открыл частицы с нулевым электрическим зарядом и единичной массой. Эти частицы назвали нейтронами. Обозначается нейтрон п. После открытия нейтрона физики Д. Д. Иваненко и В. Гейзенберг в 1932 г. выдвинули протонно-нейтронную модель атомного ядра. Согласно этой модели, ядро атома любого вещества состоит из протонов и нейтронов. (Общее название протонов и нейтронов — нуклоны.) Число протонов равно заряду ядра и совпадает с номером элемента в таблице Менделеева. Сумма числа протонов и нейтронов равна массовому числу. Например, ядро атома кислорода состоит из 8 протонов и 16 - 8 = 8 нейтронов. Ядро атома состоит из 92 протонов и 235 - 92 = 143 нейтронов.

Химические вещества, занимающие одно и то же место в таблице Менделеева, но имеющие разную атомную массу, называются изотопами. Ядра изотопов отличаются числом нейтронов. Например, водород имеет три изотопа: протии — ядро состоит из одного протона, дейтерий — ядро состоит из одного протона и одного нейтрона, тритий — ядро состоит из одного протона и двух нейтронов.

Если сравнить массы ядер с массами нуклонов, то окажется, что масса ядра тяжелых элементов больше суммы масс протонов и нейтронов в ядре, а для легких элементов масса ядра меньше суммы масс протонов и нейтронов в ядре. Следовательно, существует разность масс между массой ядра и суммой масс протонов и нейтронов, называемая дефектом массы. М = Мn — (Мp + Мn).

Так как между массой и энергией существует связь , то при делении тяжелых ядер и при синтезе легких ядер должна выделяться энергия, существующая из-за дефекта масс, и эта энергия называется энергией связи атомного ядра.

Выделение этой энергии может происходить при ядерных реакциях. Ядерная реакция — это процесс изменения заряда ядра и его массы, происходящий при взаимодействии ядра с другими ядрами или элементарными частицами. При протекании ядерных реакций выполняются законы сохранения электрических зарядов и массовых чисел: сумма зарядов (массовых чисел) ядер и частиц, вступающих в ядерную реакцию, равна сумме зарядов (массовых чисел) конечных продуктов (ядер и частиц) реакции.

Цепная реакция деления — это ядерная реакция, в которой частицы, вызывающие реакцию, образуются как продукты этой реакции. Необходимым условием для развития цепной реакции деления является требование k > 1, где k — коэффициент размножения нейтронов, т. е. отношение числа нейтронов в данном поколении к их числу в предыдущем поколении. Способностью к цепной ядерной реакции обладает изотоп урана 235U. При наличии определенных критических параметров (критическая масса — 50 кг, шаровая форма радиусом 9 см) три нейтрона, выделившиеся при делении первого ядра, попадают в три соседних ядра и т. д. Процесс идет в виде цепной реакции, которая протекает за доли секунды в виде ядерного взрыва. Неуправляемая ядерная реакция применяется в атомных бомбах. Впервые решил задачу об управлении цепной реакцией деления ядер физик Энрико Ферми. Им был изобретен ядерный реактор в 1942 г. У нас в стране реактор был запущен в 1946 г. под руководством И. В. Курчатова.

Термоядерные реакции — это реакции синтеза легких ядер, происходящие при высокой температуре (примерно 107 К и выше). Необходимые условия для синтеза ядер гелия из протонов имеются в недрах звезд. На Земле термоядерная реакция осуществлена только при экспериментальных взрывах, хотя ведутся международные исследования по управлению этой реакцией.

Если сравнить массы ядер с массами нуклонов, то окажется, что масса ядра тяжелых элементов больше суммы масс протонов и нейтронов в ядре, а для легких элементов масса ядра меньше суммы масс протонов и нейтронов в ядре. Следовательно, существует разность масс между массой ядра и суммой масс протонов и нейтронов, называемая дефектом массы. М = Мn — (Мp + Мn).

Так как между массой и энергией существует связь , то при делении тяжелых ядер и при синтезе легких ядер должна выделяться энергия, существующая из-за дефекта масс, и эта энергия называется энергией связи атомного ядра.

Выделение этой энергии может происходить при ядерных реакциях. Ядерная реакция — это процесс изменения заряда ядра и его массы, происходящий при взаимодействии ядра с другими ядрами или элементарными частицами. При протекании ядерных реакций выполняются законы сохранения электрических зарядов и массовых чисел: сумма зарядов (массовых чисел) ядер и частиц, вступающих в ядерную реакцию, равна сумме зарядов (массовых чисел) конечных продуктов (ядер и частиц) реакции.

Цепная реакция деления — это ядерная реакция, в которой частицы, вызывающие реакцию, образуются как продукты этой реакции. Способностью к цепной ядерной реакции обладает изотоп урана 235U. При наличии определенных критических параметров (критическая масса — 50 кг, шаровая форма радиусом 9 см) три нейтрона, выделившиеся при делении первого ядра, попадают в три соседних ядра и т. д. Процесс идет в виде цепной реакции, которая протекает за доли секунды в виде ядерного взрыва. Неуправляемая ядерная реакция применяется в атомных бомбах. Впервые решил задачу об управлении цепной реакцией деления ядер физик Энрико Ферми. Им был изобретен ядерный реактор в 1942 г. У нас в стране реактор был запущен в 1946 г. под руководством И. В. Курчатова.

Термоядерные реакции — это реакции синтеза легких ядер, происходящие при высокой температуре (примерно 107 К и выше). Необходимые условия для синтеза ядер гелия из протонов имеются в недрах звезд. На Земле термоядерная реакция осуществлена только при экспериментальных взрывах, хотя ведутся международные исследования по управлению этой реакцией.

Это перспективные направления ядерной энергетики. Так как данную энергию можно применять в мирных целях. Примером тому служат Атомные электростанции. Морские корабли, ледоколы, работающие за счет ядерных установок.

Большие успехи в исследовании строения атомов были достигнуты в опытах английского ученого Эрнеста Резерфорда по рассеянию α-частиц при прохождении через тонкие слои вещества. В этих опытах узкий пучок α - частиц, испускаемых радиоактивным веществом, направлялся на тонкую золотую фольгу. За фольгой помещался экран, способный светиться под ударами быстрых

α-частиц. Было обнаружено, что большинство α-частиц отклоняется от прямолинейного распространения после прохождения фольги, т. е. рассеивается, а некоторые α-частицы вообще отбрасываются назад.. Расчеты показали, что для объяснения опытов нужно принять

Резерфорд предположил, что атом устроен подобно планетарной системе. Суть модели строения атома по Резерфорду заключается в следующем: в центре атома находится положительно заряженное ядро, в котором сосредоточена вся масса, вокруг ядра по круговым орбитам на больших расстояниях вращаются электроны (как планеты вокруг Солнца). Заряд ядра совпадает с номером химического элемента в таблице Менделеева.

Планетарная модель строения атома по Резерфорду не смогла объяснить ряд известных фактов: электрон, имеющий заряд, должен за счет кулоновских сил притяжения упасть на ядро, а атом — это устойчивая система.

При движении по круговой орбите, приближаясь к ядру, электрон в атоме должен излучать электромагнитные волны всевозможных частот, т. е. излучаемый свет должен иметь непрерывный спектр, на практике же получается иное: электроны атомов излучают свет, имеющий линейчатый спектр. Разрешить противоречия планетарной ядерной модели строения атома первым попытался датский физик Нильс Бор.

В основу своей теории Бор положил два постулата. Первый постулат: атомная система может находиться только в особых стационарных или квантовых состояниях, каждому из которых соответствует своя энергия; в стационарном состоянии атом не излучает.

Это означает, что электрон (например, в атоме водорода) может находиться на нескольких вполне определенных орбитах. Каждой орбите электрона соответствует вполне определенная энергия. Второй постулат: при переходе из одного стационарного состояния в другое испускается или поглощается квант электромагнитного излучения. Энергия фотона равна разности энергий атома в двух состояниях: , , где — постоянная Планка.

При переходе электрона с ближней орбиты на более удаленную атомная система поглощает квант энергии. При переходе с более удаленной орбиты электрона на ближнюю орбиту по отношению к ядру и томная система излучает квант энергии. Теория Бора позволила объяснить существование линейчатых спектров.

 




Билет № 24

1. Какое строение имеет ядро атома? Какими особенностями обладают ядерные силы? Дайте определение дефекта массы и энергии связи ядра атома. Приведите примеры ядерных реакций.

В 1932г. после открытия протона и нейтрона учеными Д.Д. Иваненко (СССР) и В. Гейзенберг (Германия) была выдвинута протонно-нейтронная модель ядра атома

 

Согласно этой модели:
- ядра всех химических элементов состоят из нуклонов: протонов и нейтронов
- заряд ядра обусловлен только протонами
- число протонов в ядре равно порядковому номеру элемента
- число нейтронов равно разности между массовым числом и числом протонов (N=A-Z)

Условное обозначение ядра атома химического элемента:

X – символ химического элемента
А – массовое число, которое показывает:
- массу ядра в целых атомных единицах массы (а.е.м.)
(1 а.е.м. = 1/12 массы атома углерода)
- число нуклонов в ядре (A = N + Z) , где N – число нейтронов в ядре атома
Z – зарядовое число, которое показывает:
- заряд ядра в элементарных электрических зарядах (э.э.з.)
( 1э.э.з. = заряду электрона = 1,6 х 10-19 Кл)
- число протонов
- число электронов в атоме
- порядковый номер в таблице Менделеева
Ядерные силы - силы притяжения, связывающие протоны и нейтроны в ядре.

Свойства:

1.На расстояниях порядка 10-13см сильные взаимодействия соответствуют притяжению, при уменьшении расстояния – отталкиванию.

2.Независимы от наличия электрического заряда (свойство зарядовой независимости).

Одинаковая сила действует и на протон и на нейтрон.

3.Взаимодействуют с ограниченным числом нуклонов (свойство насыщения).

4.Короткодействующие: быстро убывают, начиная с r ≈ 2,2.10-15 м.

Энергия, которая необходима для полного расщепления ядра на отдельные нуклоны, называется энергией связи. Энергия связи очень велика. При синтезе 4 г гелия выделяется такое же количество энергии, как при сжигании двух вагонов каменного угля.

Масса ядра всегда меньше суммы масс покоя свободных протонов и нейтронов, его составляющих.
Разность между массой ядра и суммой масс протонов и нейтронов называется дефектом масс.

Формула для вычисления энергии связи:

- дефект массы.

mp –масса покоя протона; mn – масса покоя нейтрона. Мя - масса ядра атома.

В атомной физике массу удобно выражать в атомных единицах массы:

1 а.е.м.=1,67·10-27 кг. Коэффициент связи энергии и массы (равный с2): с2= 931,5 МэВ/а·е·м.

Ядерные реакции - превращения атомных ядер, вызванные их взаимодействиями с различными частицами или друг с другом.

Символическая запись: А + а = В + b. При написании ядерных реакций используются законы сохранения заряда и массового числа (числа нуклонов).

Примеры:

Энергетический выход ядерной реакции - разность между суммарной энергией связи частиц, участвующих в реакции и продуктов реакции.

Реакции, происходящие с выделением энергии, наз. экзотермическими, с поглощением - эндотермическими.

Эрнест Резерфорд – это один из основателей фундаментального учения о внутреннем строении атома. Родился ученый в Англии, в семье эмигрантов из Шотландии. Резерфорд был четвертым ребенком в своей семье, при этом оказался самым талантливым. Особый вклад ему удалось внести в теорию строения атома.

·

·

·

·

·

 



















Дата: 2018-09-13, просмотров: 1183.