ДНК (дезоксирибонуклеиновая кислота) – это молекула, состоящая из двух спирально закрученных полинуклеотидных цепей (рис. 14). ДНК образует правую спираль, диаметром примерно 2 нм, длиной (в развернутом виде) до 0,1 мм и молекулярной массой до 6ґ10-12 кДа. Структура ДНК была впервые определена Д.Уотсоном и Ф.Криком в 1953 г. Мономером ДНК является дезоксирибонуклеотид, состоящий из азотистого основания – аденина (А), цитозина (Ц), тимина (Т) или гуанина (Г), – пентозы (дезоксирибозы) и фосфата. Нуклеотиды соединяются в цепь за счет остатков фосфорной кислоты, расположенных между пентозами: в полинуклеотиде может быть до 30 000 нуклеотидов. Последовательность нуклеотидов одной цепи комплементарна (т.е. дополнительна) последовательности в другой цепи за счет водородных связей между комплементарными азотистыми основаниями (по две водородные связи между А и Т и по три – между Г и Ц). В интерфазе перед делением клетки происходит репликация (редупликация) ДНК: ДНК раскручивается с одного конца, и на каждой цепи синтезируется новая комплементарная цепь; это ферментативный процесс, идущий с использованием энергии АТФ. ДНК содержится в основном в ядре (см. ответ на вопрос №11); к внеядерным формам ДНК относятся митохондриальная и пластидная ДНК (см. ответ на вопрос №17).
Рис. 13. Структурная схема РНК: а – сахарофосфатный остов; б – одиночная цепь
Рис. 14. Структурная схема ДНК:
а – сахарофосфатный остов; б – комплементарные пары азотистых оснований; в – двойная спираль
РНК (рибонуклеиновая кислота) – это молекула, состоящая из одной цепи нуклеотидов (рис. 13). Рибонуклеотид состоит из одного из четырех азотистых оснований, но вместо тимина (Т) в РНК входит урацил (У), а вместо дезоксирибозы – рибоза. В клетке имеются разные виды РНК: тРНК (транспортная – транспортирует аминокислоты к рибосомам), информационная РНК (иРНК, переносит информацию о последовательности аминокислот с ДНК на белок), рибосомальная РНК (входит в состав рибосом; см. ответ на вопрос N19), митохондриальная РНК и др.
28. Особенности строения нуклеиновых кислот.
ДНК и РНК – это полинуклеотиды, состоящие из соответственно дезоксирибонуклеотидов и рибонуклеотидов (см. ответ на вопрос 27). Молекула нуклеотида состоит из пентозы, азотистого основания и остатка фосфорной кислоты. ДНК содержит дезоксирибозу, РНК – рибозу; ДНК содержит азотистые основания А и Г (относятся к классу пуринов) и Ц и Т (класс пиримидинов), а РНК вместо Т содержит У (см. ответ 27).
ДНК и РНК – это кислоты, т.к. они содержат остаток фосфорной кислоты (–Н2РО4). Сахар, азотистое основание и остаток фосфорной кислоты объединяются в молекулу нуклеотида.
Два нуклеотида образуют динуклеотид, соединяясь путем конденсации, в результате которой между фосфатной группой одного и сахаром другого нуклеотида возникает фосфодиэфирный мостик. При синтезе полинуклеотида этот процесс многократно повторяется. Неразветвленный сахарофосфатный остов строится путем образования фосфодиэфирных мостиков между 3- и 5-м атомами углерода остатков сахаров. Фосфодиэфирные мостики образуются прочными ковалентными связями, что сообщает прочность и стабильность всей полинуклеотидной цепи.
Нуклеиновые кислоты обладают первичной структурой (нуклеотидная последовательность) и трехмерной структурой. ДНК состоит из двух спирально закрученных полинуклеотидных цепей. Цепи направлены в противоположные стороны: 3-конец одной цепи располагается напротив 5-конца другой. Находящиеся друг против друга азотистые основания двух цепей связаны водородными связями (по две связи между А и Т и по три – между Г и Ц). Основания, соединяющиеся друг с другом водородными связями, называют комплементарными (см. также ответ на вопрос 27).
29. Опишите процесс биосинтеза белка. Каково биологическое значение данного процесса? Какую роль играет ДНК в процессе биосинтеза белка?
Белки синтезируют все клетки, кроме безъядерных. Структура белка определяется ядерной ДНК. Информация о последовательности аминокислот в одной полипептидной цепи находится в участке ДНК, который называется ген. В ДНК заложена информация о первичной структуре белка. Код ДНК един для всех организмов. Каждой аминокислоте соответствует три нуклеотида, образующих триплет, или кодон. Такое кодирование избыточно: возможны 64 комбинации триплетов, тогда как аминокислот только 20. Существуют также управляющие триплеты, например, обозначающие начало и конец гена.
Синтез белка начинается с транскрипции, т.е. синтеза иРНК по матрице ДНК. Процесс идет с помощью фермента полимеразы по принципу комплементарности и начинается с определенного участка ДНК. Синтезированная иРНК поступает в цитоплазму на рибосомы, где и идет синтез белка.
тРНК имеет структуру, похожую на лист клевера, и обеспечивает перенос аминокислот к рибосомам. Каждая аминокислота прикрепляется к акцепторному участку соответствующей тРНК, расположенному на «черешке листа». Противоположный конец тРНК называется антикодоном и несет информацию о триплете, соответствующем данной аминокислоте. Существует более 20 видов тРНК.
Перенос информации с иРНК на белок во время его синтеза называется трансляцией. Собранные в полисомы рибосомы двигаются по иРНК; движение происходит последовательно, по триплетам. В месте контакта рибосомы с иРНК работает фермент, собирающий белок из аминокислот, доставляемых к рибосомам тРНК. При этом происходит сравнение кодона иРНК с антикодоном тРНК; если они комплементарны, фермент (синтетаза) «сшивает» аминокислоты, а рибосома продвигается вперед на один кодон.
Синтез одной молекулы белка обычно идет 1–2 мин (один шаг занимает 0,2 с).
Биосинтез белка – это цепь реакций, в которых используется энергия АТФ. Во всех реакциях синтеза белка участвуют ферменты.
Биосинтез белка – это матричный синтез. Матрицей является ДНК в синтезе РНК и ДНК или РНК в синтезе белка.
30. Раскройте роль ферментов в регуляции процессов жизнедеятельности, в биосинтезе белка.
Рис.15. Схема функциональной организации молекул фермента:
а – простой фермент; б – двухкомпонентный фермент; в – аллостерический фермент (А – активный центр, S-субстрат, R – регулятор, или аллостерический центр); 1 – каталитический участок; 2 – контактные участки; 3 – кофактор
Ферменты (лат. закваска) – это биологические катализаторы белковой природы. Они могут состоять только из белка или включать в себя небелковое соединение – витамины или ион металла. Ферменты участвуют как в процессах ассимиляции, так и диссимиляции. Действуют они в строго определенной последовательности. Ферменты специфичны для каждого вещества и ускоряют только определенные реакции. Но встречаются ферменты, которые катализируют несколько реакций.
Активный центр фермента – это небольшой участок фермента, на котором идет данная реакция (рис. 15).
Физиологическая роль ферментов заключается в том, что при их отсутствии или недостаточной активности резко замедляются процессы обмена веществ; в присутствии ферментов реакции могут ускоряться в 1011 раз. Процесс биосинтеза белка – это тоже ферментативный процесс (см. ответ на вопрос 29).
31. Дайте сравнительную характеристику автотрофных и гетеротрофных организмов.
Автотрофные организмы (греч. аутус – сам и трофе – питание) – это организмы, синтезирующие органику из неорганических веществ за счет энергии солнечной радиации (фотосинтез, фототрофы) или за счет энергии окисления неорганических соединений (хемосинтез; хемотрофы). К автотрофам относятся все зеленые растения и некоторые бактерии (пурпурные и зеленые, содержащие бактериохлорофилл), к хемотрофам – нитрифицирующие бактерии, серо- и железобактеры.
Гетеротрофные организмы (греч. гетерос – другой, трофе – питание) – это организмы, питающиеся готовыми органическими соединениями. К ним относятся сапротрофы – организмы, питающиеся мертвой органикой, и паразиты – питающиеся живой органикой. К сапротрофам относятся большинство животных, человек, бактерии гниения и брожения, грибы. К паразитам – некоторые простейшие, паразитические черви, клещи, болезнетворные бактерии и т.д.
32. Каково значение процессов обмена веществ в функционировании клетки, организма, биосферы?
Обмен веществ и энергии – важнейшая функция живого организма (см. также ответ на вопрос 7). В процессе обмена организм получает вещества, необходимые для построения и обновления структурных элементов клеток и тканей, и энергию для обеспечения всех жизненных процессов.
Совокупность всех реакций биосинтеза, сопровождающихся, как правило, поглощением энергии, называется ассимиляцией (пластическим обменом), а всех реакций распада, сопровождающихся, как правило, выделением энергии – диссимиляцией (энергетическим обменом). Совокупность всех реакций ассимиляции и диссимиляции называется метаболизмом.
Обмен веществ осуществляется на клеточном, тканевом, органном и организменном уровнях. Нарушения обмена веществ сказываются на всех процессах жизнедеятельности организма и могут привести к его гибели.
Биосфера – это геологическая оболочка Земли, населенная живыми организмами. Биосфера – открытая система; подобно живым организмам биосфера получает энергию извне. В биосфере постоянно осуществляется обмен веществ. В биосфере идут биогеохимические процессы, в которых участвуют организмы-продуценты и организмы-редуценты. Безостановочный процесс закономерного циклического перераспределения вещества и энергии в биосфере называют большим кругом биотического обмена. Нарушения этого процесса приводят к нарушению гомеостаза биосферы и в конечном счете могут привести к ее гибели.
33. В каких структурных единицах клетки протекают процессы кислородного окисления? Каков их химизм и энергетический эффект?
Стадия кислородного окисления энергетического обмена происходит в митохондриях, на внутренних мембранах которых находятся дыхательные ферменты (см. также ответ на вопрос 17). На этой стадии из одной молекулы молочной кислоты получается 18 молекул АТФ, а в сумме из одной молекулы глюкозы при гликолизе (бескислородный этап, который идет за счет ферментов в растворимой части цитоплазмы клетки) и аэробном окислении образуется 38 молекул АТФ.
КПД окислительного фосфорилирования составляет 55%.
Дата: 2019-12-22, просмотров: 1173.