Простые и сложные высказывания
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Наши рассуждения слагаются из высказываний. К примеру, в умозаключение «Некоторые птицы летают; значит, некоторые летающие – птицы» входят два разных высказывания.

Высказывание – более сложное образование, чем имя. При разложении высказываний на более простые части мы всегда получаем те или иные имена. Скажем, высказывание «Солнце есть звезда» включает в качестве своих частей имена «Солнце» и «звезда».

Высказывание грамматически правильное предложение, взятое вместе с выражаемым им смыслом (содержанием) и являющееся истинным или ложным.

Понятие высказывания – одно из исходных, ключевых понятий логики. Как таковое оно не допускает точного определения, в равной мере приложимого в разных ее разделах. Ясно, что всякое высказывание описывает определенную ситуацию, что-то утверждая или отрицая о ней, и является истинным или ложным.

Высказывание считается истинным, если даваемое им описание соответствует реальной ситуации, и ложным, если не соответствует ей. «Истина» и «ложь» называются истинностными значениями высказываний.

Из отдельных высказываний разными способами можно строить новые высказывания.

Например, из высказываний «Дует ветер» и «Идет дождь» можно образовать более сложные высказывания «Дует ветер и идет дождь», «Либо дует ветер, либо идет дождь», «Если идет дождь, то дует ветер» и т.п.

Выражения «и», «либо, либо», «если, то» и т.п., служащие для образования сложных высказываний, называются логическими связками.

Высказывание называется простым, если оно не включает других высказываний в качестве своих частей.

Высказывание называется сложным, если оно получено с помощью логических связок из других, более простых высказываний.

Перейдем к рассмотрению наиболее важных способов построения сложных высказываний.

Отрицание

Отрицание логическая связка, с помощью которой из данного высказывания получается новое высказывание, такое, что если исходное высказывание истинно, его отрицание является ложным, и наоборот. Отрицательное высказывание состоит из исходного высказывания и отрицания, выражаемого обычно словами «не», «неверно, что». Отрицательное высказывание является, таким образом, сложным высказыванием: оно включает в качестве своей части отличное от него высказывание.

Например, отрицанием высказывания «10 – четное число» является высказывание «10 не есть четное число» (или: «Неверно, что 10 есть четное число»).

Обозначим высказывания буквами А, В, С,... Полный смысл понятия отрицания высказывания задается условием: если высказывание А истинно, его отрицание ложно, и если А ложно, его отрицание истинно.

Например, так как высказывание «1 есть целое положительное число» истинно, его отрицание «1 не является целым положительным числом» ложно, а так как «1 есть простое число» ложно, его отрицание «1 не есть простое число» истинно.

Конъюнкция

Соединение двух высказываний при помощи слова «и» дает сложное высказывание, называемое конъюнкцией. Высказывания, соединяемые таким образом, называются членами конъюнкции.

Например, если высказывания «Сегодня жарко» и «Вчера было холодно» соединить таким способом, получится конъюнкция «Сегодня жарко и вчера было холодно».

Конъюнкция истинна только в случае, когда оба входящих в нее высказывания являются истинными; если хотя бы один из ее членов ложен, то и вся конъюнкция ложна.

Высказывание А может быть либо истинным, либо ложным, и то же самое можно сказать о высказывании В. Следовательно, возможны четыре пары значений истинности для этих высказываний.

Определение конъюнкции, как и определения других логических связок, служащих для образования сложных высказываний, основывается на двух предположениях.

Во-первых, каждое высказывание (как простое, так и сложное) имеет одно и только одно из двух значений истинности: оно является либо истинным, либо ложным.

Во-вторых, истинностное значение сложного высказывания зависит только от истинностных значений входящих в него высказываний и способа их логической связи между собой.

Эти предположения кажутся простыми. Приняв их, нужно, однако, отбросить идею, что наряду с истинными и ложными высказываниями могут существовать также высказывания, неопределенные с точки зрения своего истинностного значения (такие, как, скажем, «Через пять лет в это время будет идти дождь с громом» и т.п.). Нужно отказаться также от того, что истинностное значение сложного высказывания зависит от «связи по смыслу» соединяемых высказываний.

В обычном языке два высказывания соединяются союзом «и», когда они связаны между собой по содержанию, или смыслу. Характер этой связи не вполне ясен, но понятно, что мы не рассматривали бы конъюнкцию «Он шел в пальто и я шел в университет» как выражение, имеющее смысл и способное быть истинным или ложным. Хотя высказывания «2 – простое число» и «Москва – большой город» истинны, мы не склонны считать истинной также их конъюнкцию «2 – простое число и Москва – большой город», поскольку составляющие ее высказывания не связаны между собой по смыслу. Упрощая значение конъюнкции и других логических связок, и отказываясь для этого от неясного понятия «связь высказываний по смыслу», логика делает значение этих связок одновременно и более широким, и более ясным.

Дизъюнкция

Соединение двух высказываний с помощью слова «или» дает дизъюнкцию этих высказываний. Высказывания, образующие дизъюнкцию, называются членами дизъюнкции.

Слово «или» в повседневном языке имеет два разных смысла. Иногда оно означает «одно или другое или оба», а иногда «одно или другое, но не оба вместе».

Например, высказывание «В этом сезоне я хочу пойти на “Пиковую даму” или на “Аиду”» допускает возможность двукратного посещения оперы. В высказывании же «Он учится в Московском или в Ярославском университете» подразумевается, что упоминаемый человек учится только в одном из этих университетов.

Первый смысл «или» называется неисключающим . Взятая в этом смысле дизъюнкция двух высказываний означает только, что по крайней мере одно из этих высказываний истинно независимо от того, истинны они оба или нет. Взятая во втором, исключающем, смысле дизъюнкция двух высказываний утверждает, что одно из них истинно, а второе – ложно.

Неисключающая дизъюнкция истинна, когда хотя бы одно из входящих в нее высказываний истинно, и ложна, только когда оба ее члена ложны; исключающая дизъюнкция истинна, когда истинным является только один из ее членов, и она ложна, когда оба ее члена истинны или оба ложны.

В логике и математике слово «или» почти всегда употребляется в неисключающем значении.

Центральная задача логики – отделение правильных схем рассуждения от неправильных и систематизация первых. Логическая правильность определяется логической формой. Для ее выявления нужно отвлечься от содержательных частей рассуждения (собственных символов) и сосредоточить внимание на несобственных символах, представляющих эту форму в чистом виде. Отсюда интерес формальной логики к таким, обычно не привлекающим внимания словам, как «и», «или», «если, то» и т.п.

Дата: 2019-12-22, просмотров: 240.