И НАСАДОЧНЫХ КОЛОНН
Цель работы: Экспериментально определить гидравлическое сопротивление сухих и орошаемых контактных элементов – тарелок и насадок. Сопоставить измеренные величины с рассчитанными по эмпирическим зависимостям.
Основные определения и теория процесса
Тарельчатые и насадочные колонны являются широко распространенными аппаратами в химической и других смежных отраслях промышленности. В них осуществляется взаимодействие восходящих потоков газа или пара с жидкостью, стекающей по колонне вниз (абсорбция, ректификация).
Тарельчатые колонны работают в основном в барботажном режиме, когда пар или газ проходит через слой жидкости на тарелке в виде пузырей или струй.
Насадочные колонны работают в большинстве случаев как поверхностные аппараты, когда пар или газ взаимодействуют с жидкостью, стекающей в виде пленок по насадке.
Существует большое разнообразие контактных тарелок: колпачковые, ситчатые, клапанные, струйные и т.д. Их устройство и принцип работы описаны в [2].
Наиболее распространенной насадкой являются кольца Рашига, которые изготавливаются из керамики и металла. Кроме них используются также кольца Паля, спиральная насадка и др. [2].
Назначение тарелок и насадки в колонных аппаратах состоит в том, чтобы создать хороший контакт газа и жидкости и тем самым обеспечить эффективное протекание процессов тепло- и массообмена между взаимодействующими фазами.
Для того чтобы обеспечить перемещение газа через колонну, необходимо затратить мощность на преодоление гидравлических сопротивлений.
N = Δ P · V (1)
где Δ P – гидравлическое сопротивление колонны, Па;
V – объемный расход газа, м3/с.
Для колпачковых тарелок гидравлическое сопротивление рассчитывают как сумму трех составляющих:
Δ Pт = Δ Pсух. + Δ Pσ + Δ Pс.т. (2)
где Δ Pсух = – сопротивление сухой тарелки, Па;
Δ Pσ = – сопротивление связанное с преодолением сил
поверхностного натяжения жидкости, Па;
Δ Pст = – сопротивление, оказываемое слоем
жидкости на тарелке, Па.
Здесь: ρж – плотность жидкости, кг/м3;
ρг – плотность газа, кг/м3;
– коэффициент сопротивления колпачковой тарелки ( ≈ 5);
σ – поверхностное натяжение жидкости, Н/м;
m – высота прорезей колпачка, м;
b – ширина прорезей колпачка, м;
w0 = w/ψ – скорость газа в прорезях колпачка, м/с;
w = V/S – скорость газа в колонне, м/с ;
V – расход газа, м3/с;
S – площадь сечения колонны, м2;
ψ – доля сечения прорезей колпачка определяется как отношения их суммарной площади на тарелке к площади поперечного сечения колонны S, кг/м3;
К – отношение плотности пены к плотности чистой жидкости
(К ≈ 0,5);
l –расстояние от верхнего края прорезей до сливного порога, м (l = 0,01м);
g – ускорение свободного падения, м/с2;
Δ h = (Vж /ПК) – подпор жидкости над переливным устройством, м;
Vж – объемный расход жидкости, м3/с;
П – периметр слива жидкости, м.
С увеличением скорости газа растет гидравлическое сопротивление тарелок, и при некоторых значениях W расходы энергии могут оказаться слишком большими. Однако чаще предельное значение скорости газа в тарельчатых колоннах определяется величиной брызгоуноса, который определяется как отношение количества жидкости, уносимого одним килограммом газа с нижележащей на вышележащую тарелку. Величину брызгоуноса е (кг жидкости/кг газа) для колпачковых тарелок можно определить по формуле:
е = (11,5 · 10-6/σ) · (W/НС)3,2 (3)
где НС – высота сепарационного пространства, представляющая собой расстояние от верхней кромки пены до вышележащей тарелки, м.
Допустимая величина брызгоуноса составляет 0,1 кг/кг. Если значение больше 0,1, то необходимо уменьшить скорость газа в колонне.
Максимальный расход жидкости в колонне определяется сечением переливного устройства, обеспечивающего переток жидкости с вышележащей тарелки на нижележащую. При этом допустимая скорость жидкости в переливном устройстве можно рассчитать как
, м/с (4)
Сопротивление орошаемой насадочной колонны можно рассчитать исходя из величины гидравлического сопротивления сухой насадки
Δ Pн = Δ Pсух. · [1+8,4(L/G)0,4(ρг/ρж) 0,23 ] (5)
Сопротивление сухой насадки зависит от высоты слоя Н и определяется как
(6)
где a – удельная поверхность насадки, м2/м3
a = 300
ε – доля свободного объема насадки, м3/м3
ε = 0,7
Обе эти величины зависят от вида насадки и берутся из справочных таблиц [2].
Коэффициент сопротивления λ зависит от числа Рейнольдса для газа
Reг
При Reг < 40 λг = 140/Reг
При Reг > 40 λг = 16/Reг0,2
В зависимости от скорости газа возникают различные режимы работы насадочной колонны: пленочный, подвисания, захлебывания, эмульгирования.
При достижении определенной скорости газа, называемой «точкой инверсии фаз» происходит резкое изменение в характере гидродинамической обстановки. В этот момент насадка полностью заполняется жидкостью, а газ начинает барботировать через нее в виде пузырьков и струек. Дальнейшее увеличение скорости может привести к захлебыванию колонны, при котором нарушается противоток газа и жидкости и жидкость выбрасывается из верхней части колонны. Очевидно, что рабочая скорость должна быть меньше, чем скорость захлебывания Wз, которую можно найти из уравнения:
(7)
Коэффициент А = 0,022 для процессов абсорбции, при которых жидкость взаимодействует с газами А = - 0,125 для систем пар – жидкость.
Описание установки
Дата: 2019-12-22, просмотров: 231.