Расчетные характеристики материала и коэффициенты
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Определение удельных показателей

 

Варианты компоновочных схем несущих элементов балочной площадки приведены на рис. 1.1.

а) – вариант 1: балочная клетка нормального типа;

б) – вариант 2: балочная клетка усложненного типа.

Расход стали на балки, приведенный к 1 м2 площади рабочей площадки, найдем по формуле


 

Рис.1.1. Варианты балочной клетки

 

Расход стали по 1 варианту (msh – вес настила)

 

Расход стали по 2 варианту

 


Из сопоставления показателей следует, что по расходу материала наилучшим является первый вариант, который и принимаем как основной.

 



Проверка прочности настила

Поскольку отношение большей стороны листа настила к меньшей равно 5,5/1,3 = 4,2 что больше 2, то в этом случае настил рассчитывается как длинная пластина, работающая в условиях цилиндрического изгиба только вдоль короткой стороны.

Полное напряжение в пластине равно

 

sх = sох + sих,

 

где sох – осевые напряжения вдоль оси х; sux - изгибные напряжения вдоль оси х.

Условие прочности по упругой стадии работы стали запишем по [5] в виде

 

,

 

где kp – коэффициент пластины,

 

;

 

k0 и ki - коэффициенты, определяемые в зависимости от kp по табл. 8.3

 


qn - нормативная равномерно распределенная нагрузка

gf - коэффициент надежности по нагрузке;

lmin – наименьшая сторона пластины;

tsh – толщина настила.

Определяем коэффициент kp , при величине нагрузки

qn = g n ( gsh + vn ) = 0,95 (0,785 + 24) = 23,54 кН/м2 = 0,002354 кН/см2

 

Этому значению kp соответствуют в табл. 8.3 [5] величины коэффициентов k 0 = 0,036 и ki = 0,43

Тогда

 

 

Условие прочности выполняется.

 


Проверка жесткости настила

Максимальный прогиб в середине пластины определяем по [5] в виде

fmax = kd tsh,

 

где kd – коэффициент, принимаемый по табл.8.3 [5] в зависимости от величины kpПри kp =24,74 kd = 0,605 и fmax = 0,605*1 = 0,605 см

Предельный прогиб настила по [ 2 ] равен fu = lsh/130 = 130/130 = 1см

Требование второго предельного состояния для настила выполняется

fmax = 0,605 см < fu = 1см



Расчет прокатной балки

 

Выполнить проверку балки настила варианта балочной клетки, принятого в качестве основного в примере 1.

Исходные данные (по результатам компоновки основного варианта)

- настил – лист толщиной 10 мм;

- балка настила – двутавр №35Б1 по ГОСТ 26020-83;

- пролет балок настила lfb = 5,5 м;

- шаг балок настила аfb = 130 см;

- материал балок сталь обычной прочности.

 

Геометрические характеристики двутавра №35Б1

Геометрические характеристики принимаем по сортаменту горячекатаных двутавров по ГОСТ 26020-83:

- высота сечения h = 346 мм,

- толщина стенки tw = 6,2 мм,

- ширина полки bf = 155 мм,

- толщина полки tf = 8,5 мм,

- площадь сечения А = 49,53 см2,

- момент инерции I = 10060 см4,

- момент сопротивления W = 581,7 см3.

Масса профиля g = 38,9 кг/м

Площадь полки Af = tf bf = 0,85×15,5 = 13,175 см2.

Площадь стенки Aw = A – 2 Af = 49,53 - 2×13,175 = 23,28см2

 

Статический расчет

Уточняем нагрузку на балку

Погонная (линейная) нагрузка для расчета на прочность

где gfb – вес 1 м.п. балки настила, gfb=0,389 кН/м.

Линейная нагрузка для расчета на жесткость равна:

Определяем расчетные усилия

Максимальный расчетный изгибающий момент в середине пролета балки

 

 

Максимальная поперечная сила на опоре


 


Проверка прочности

Касательные напряжения в опорном сечении балки проверяем по формуле

 

 

где Rs = 0,58 Ry = 0,58×240 = 139,2 МПа

Поскольку t = 56,7 МПа < 0,5Rs = 0,5×139,2 = 69,6 МПа, то с1 = с в формуле проверки нормальных напряжений. Коэффициент с принимаем по табл. 66 [1], а зависимости от отношения Af / Aw = 13,175/23,18 = 0,56, при котором с = 1,11. Выполняем проверку нормальных напряжений

 

 

Требование прочности выполняется

 

Проверка жесткости

Определяем прогиб балки в середине пролета

 

 

Требование второго предельного состояния выполняется, так как

f =2,05 см < fu = 2,5 см



Статический расчет

 

Расчетную схему главной балки принимаем в виде разрезной шарнирно-опертой однопролетной балки. Поскольку число сосредоточенных грузов от давления балок настила более 5, то нагрузку принимаем в виде равномерно распределенной.

 

Рис. 2.1. Расчетная схема балки

 

Погонная (линейная) нагрузка для расчета на прочность определяется по формуле


 

где gmb – вес 1 м.п. главной балки, принимаем gmb=2,5 кН/м.

Линейная нагрузка для расчета на жесткость равна:

 

 

Максимальный расчетный изгибающий момент в середине пролета балки

 

 

Максимальная поперечная сила на опоре

 

.

 

Изгибающий момент в середине пролета балки от нагрузки для расчета на жесткость

 

 

2.3 Компоновка и предварительный подбор сечения составной балки

 

Принимаем гибкость стенки l w=125, в соответствии с рекомендациями [3]. Минимальная толщина стенки равна tw , min= 12 мм.

Определяем минимальную высоту сечения сварной балки при предельном относительном прогибе ( fm b / lmb u =1/250)

 

 

Находим минимальную толщину стенки из условия предельного прогиба

 

.

 

Толщина стенки из условия прочности на срез равна

 

 

где Rs=0,58Ry=0,58×240=139,2 МПа.

Определяем наименьшую толщину стенки из условия смятия, поскольку принимаем этажное сопряжение балок в балочной клетке. В каждом узле опираются две балки настила, поэтому F=2Qf b = 2 ×98,12=196,24 кН. Толщиной полки главной балки задаемся tf=2 см.

 

Находим толщину стенки, соответствующую балке оптимальной высоты.


 

Сравниваем все полученные значения толщины стенки: tw , min = 1,2см; tw , f = 0,6см; tw , s = 0,82см; tw , loc = 0,42см; tw , opt = 1,21см.

Наибольшее значение из этого ряда tw. opt = 1,21 см показывает, что следует принимать высоту балки, соответствующую tw, opt .

Принимаем толщину стенки 13 мм, тогда высота стенки будет равна

hw = tw l w=1,3×125 = 156 см.

Принимаем размеры стенки с учетом стандартных размеров ГОСТ 19903-74*

hw х tw = 1700 х 13 мм.

Определяем размеры поясных листов. Требуемая площадь поясов (принимая h = hw) равна

Требования, предъявляемые к размерам поясных листов и диапазон определяемых величин следующие:

bf =(1/3…1/5)h = 57…34см;

bf,min = 18,0см;

tf,max = 3 tw= 3×1,3=3,9 см;

Принимаем размеры поясных листов с учетом ослабления верхнего пояса отверстиями для болтов крепления балок настила bf x tf = 500 x 20 мм, которые удовлетворяют всем вышеуказанным требованиям. Подобранное сечение показано на рис. 2.2.

 



Компоновка сечения

ПРОВЕРКА ЖЕСТКОСТИ БАЛКИ

Выполнить проверку жесткости балки, подобранной в примерах 1 и 2.

Исходные данные:

- lmb = 15,0 м;

- qmb,f = 133,7 кН/м;

- Ix = 1954198,7 см4;

- Ix,1 = 1362270 см4.

Находим прогиб главной балки переменного сечения, предварительно определив:

- прогиб главной балки постоянного сечения

 

 

- коэффициент a

-

 

fmb=f 0 mb a = 2,18×1,052 = 2,29 см.

Предельный прогиб

fmb , u = lm b / 250 = 1500/250 = 6 см.

Сравниваем фактический прогиб с предельным fmb = 2,29 см.< fmb,u = 6 см.

Подобранное сечение балки удовлетворяет требованиям второй группы предельных состояний – жесткости.

 



РАСЧЕТ ОПОРНОЙ ЧАСТИ БАЛКИ

 

Рассчитать опорную часть главной балки рабочей площадки.

Исходные данные:

- сечение балки на опоре hw x tw =1700x1,3 мм, bf x tf = 300x20 мм;

- опорная реакция балки F = Qmax = 1194 кН;

 

Проверка принятого сечения

 

Проверяем опорную часть балки на устойчивость.

Площадь таврового сечения с учетом полосы стенки шириной lh (п.7.12 [1])

 

 

равна

Момент инерции сечения относительно оси х – х


Радиус инерции

 

Гибкость стойки при высоте, равной высоте стенки балки (см. рис. 6.1), равна

 

 

Коэффициент продольного изгиба определяем по табл. 72 [1] j = 0,942. Проверка устойчивости выполняется по формуле

 

 

Проверяем ребро на местную устойчивость в соответствии с указаниями [1]. п.7.22

 

При

,

 

предельное отношение свеса ребра к толщине по табл. 29* [1] равно


 

Устойчивость опорной части балки и опорного ребра обеспечены, поскольку

 

.

 



Расчет стыка поясов

 

Определяем распределение момента между поясами и стенкой

 

Mf = Mx – Mw = 4477,5 – 1219,48 = 3258,02 кН×м

 

Усилия в поясных накладках равны

 


Требуемая площадь накладок на пояс нетто равна

 

 

Принимаем двусторонние накладки с наружной стороны 500х12 мм, с внутренней стороны пояса две накладки 210х12 мм.

Предполагая в каждом ряду по 4 болта, найдем площадь накладок с учетом ослабления, диаметр отверстия под болты d = 20 мм – d0 = 23 мм.

 > = 78,92 см2

Площадь пояса с учетом ослабления отверстиями

Суммарная площадь сечения накладок нетто больше, чем сечение пояса, поэтому проверку на прочность выполняем только послабленному сечению пояса. Поскольку A f, n = 81,6 см2 < 0,85Af = 0,85*100 = 85 см2, то проверка производится по условной площади A f, c = 1,18* A f, n = 1,18*81,6 = 96,29 см2 (см. п. 11.14 [1]).

 

 

Проверка прочности выполняется.

Расстояние между центрами болтов вдоль усилия должно быть не менее e+1,5 d0 (e – расстояние между рядами поперек усилия). По табл. 39 [1] е = 2,5 d0 , отсюда минимальное расстояние между болтами равно 4 d0 = 4*23 = 92 мм. Принимаем шаг 100 мм.

Расчетное усилие, которое может быть воспринято одним высокопрочным болтом, определяется по формуле (131)* [1]

 


 

где Rbh – расчетное сопротивление растяжению высокопрочного болта; Rbh = 0,7Rbun = 0,7*110 = 77 кН/см2;

Аbh – площадь сечения болта нетто, Аbh = 2,45 см2

k – число поверхностей трения, k = 2;

γb – коэффициент работы соединения, γb = 1,0 при числе болтов 10 и более;

γh - коэффициент надежности, принимаемый по табл. 36* [1], γh = 1,12;

μ – коэффициент трения, принимаемый по табл. 36* [1], для газопламенного способа очистки μ = 0,42

Необходимое число высокопрочных болтов:

 

 

Принимаем 16 болтов.

 



Расчет стыка стенки

 

Стык перекрываем двумя накладками толщиной 13 мм каждая. Принимаем по два вертикальных ряда болтов на каждой полунакладке (m=2), число горизонтальных рядов k найдем в зависимости от

 

 

где hmax – расстояние между крайними рядами болтов, hmax = 159 см;

При α = 0,168 k = 15. Принимаем 16 рядов болтов, получаем расстояние между ними 106 мм, что больше аmin = 2,5d0 = 2,5*23 = 57,5 мм и меньше amax = 18t = 18*13 = 234 мм

Наибольшее усилие в крайнем болте от изгибающего момента

 

 

Поскольку поперечная сила Qx = 0, то проверка сводится к виду:

 

Рис.8.2. Монтажный стык балки на высокопрочных болтах.



ПОДБОР СЕЧЕНИЯ КОЛОННЫ

 

Подобрать сечение стержня сплошной центрально-сжатой колонны рабочей площадки. Исходные данные:

а) по заданию на проектирование:

- высота этажа H = 7,2 м;

- материал – углеродистая сталь обычной прочности;

б) по результатам выполнения предшествующих разделов:

- толщина настила tsh = 10 мм;

- высота второстепенной балки hfb = 34,6 см;

- высота главной балки hmb = 174,0 см;

- реакция главной балки Vmb = Qmb , max = 1194 кН;

- главная балка опирается на колонну сверху.

 

Определение продольной силы

 

Рассчитывается средняя колонна, на которую опираются две главные балки. Принимаем собственный вес колонны gc = 0,7 кН/м. Расчетная продольная сила определяется по формуле

N = 2 Vmb + g fg g n gc lc = 2×1194 + 1,05×0,95×0,7×5,8 = 2392,05 кН

 

Установка ребер жесткости

 

При  стенку не следует укреплять ребрами жесткости (п. 7.21* [1]). Тем не менее, согласно того же пункта норм, принимаем два ребра по длине колонны и ставим их на равных расстояниях по длине.

Ширина ребра жесткости должна быть не менее bh = hw/30 + 40 = 280/30 + 40 = 49 мм, а толщина

 

 

Принимаем ребра жесткости hef x tw = 90*6 мм

 

Поясные швы

 

Поясные швы принимаем высотой, равной минимальному катету по табл. 38* [1], который при толщине более толстого свариваемого элемента 20 мм для автоматической сварки составляет 6 мм.

 



Определение размеров ребра

 

Для ручной сварки принимаем электроды типа Э46, для которых Rw,f = 200 МПа (табл. 56 [1]), Rwz = 0,45, Run = 0,45*370 = 166,5 МПа, γwz = γwf = 1,0, βf = 0,7, βz = 1,0.

Поскольку условия Rw,f / Rwz = 200 / 166,5 = 1,2 > 1,1 и Rw,f = 200 МПа < Rwz βz / βf = 166,5*1,0/0,7 = 237,85 МПа выполняются, достаточно расчета по металлу шва.

При максимальной высоте шва kf,max = 1,2 tmin (tmin = tw = 14 мм), то есть kf,max = 16,8 мм, принимаем kf = 13 мм. Длина швов равна

 

 

Требуемая длина оголовка

 

 

Принимаем длину оголовка hs = 500 мм. Ширину опорных ребер принимаем из условия опирания балки bs = 170 мм (2bs > ls,ef).

 

Проверка прочности ребра

 

Проверка прочности траверсы

 

Погонная нагрузка на траверсу (при ширине грузовой площади dtr = c + ttr + b/2 = 6,0 +1+28/2 = 21 см) равна

qtr = s dtr = 1,14×21 = 23,94 кН/см

Находим расчетные усилия

 

 

где ltr = a = 11 см.

Проверяем траверсы на прочность в опорном сечении

 

 

Проверяем прочность траверсы в пролетном сечении Q =0

 

 

Принятые размеры траверс удовлетворяют условиям прочности.

 

Назначение анкерных болтов

 

Принимаем два анкерных болта диаметром 20 мм (их расположение указано на рис.12.1)

 

ЛИТЕРАТУРА

 

1. СНиП II-23-81*. Стальные конструкции / Минстрой России.- М.: ГП ЦПП, 1996. – 96 с.

2. СНиП 2.01.07.-85*. Нагрузки и воздействия / Минстрой России.- М.: ГП ЦПП, 1996. – 44 с.

3. Металлические конструкции: Общий курс: Учеб.для вузов / Г.С. Ведеников, Е.И. Беленя, В.С. Игнатьева и др.; Под ред. Г.С. Веденикова. – 7-е изд., перераб и доп. – М.: Стройиздат, 1998. – 760 с.

4. СНиП 2.03.01-84 Бетонные и железобетонные конструкции / Госстрой России.- М.: ГУП ЦПП, 2000. – 76с

5. Колесов А.И., Поликарпов Б.С. Стальная рабочая площадка промздания. Компоновка, конструирование и расчет несущих элементов. Учебное пособие. – Н. Новгород: ННГАСУ, 1998 – 91 с.

6. Металлические конструкции. В 3 т. Т. 1. Элементы стальных конструкций: Учеб. Пособие для строит. Вузов / В.В. Горев, Б.Ю. Уваров, В.В. Филиппов и др.; Под ред. В.В. Горева. – М.: Высш. шк., 1997. – 527 с.

7. Металлические конструкции. В 3 т. Т.1. Общая часть.(Справочник проектировщика) / Под общ. ред. В.В. Кузнецова (ЦНИИпроектстальконструкция им. Н.П. Мельникова) – М.: изд-во АСВ, 1998. – 576 с.

8. Металлические конструкции. В 3 т. Т.2. Стальные конструкции зданий и сооружений.(Справочник проектировщика) / Под общ. ред. В.В. Кузнецова (ЦНИИпроектстальконструкция им. Н.П. Мельникова) – М.: изд-во АСВ, 1998. – 512 с.

9. Металлические конструкции. Вопросы и ответы. Учебное пособие для вузов / В.В. Бирюлев, А.А. Кользеев, И.И. Крылов, Л.И Стороженко. – М.: изд-во АСВ, 1994. – 336 с.

10. Лихтарников Я.М. Вариантное проектирование и оптимизация стальных конструкций. – М.: Стройиздат, 1979. – 319с.

11. СТП ННГАСУ 1-1-98 – 1-7-98. Стандарт студенческой проектной документации. – Н. Новгород: ННГАСУ, 1998.

 

 

Расчетные характеристики материала и коэффициенты

 

Настил относится к 3-й группе конструкций (табл. 50* [1]), поэтому сталь обычной прочности может быть С235 по ГОСТ 27772-88. Для этой стали расчетное сопротивление растяжению, сжатию, изгибу равно Ry =230 МПа при толщине листов от 2 до 20 мм, временное сопротивление стали разрыву Run =360 МПа (табл. 51* [1]).

Балки настила и вспомогательные балки прокатного профиля относятся ко 2-й группе конструкций, принимаем сталь С245 по ГОСТ 27772-88. Для этой стали Ry =240 МПа при толщинах листов от 2 до 20 мм, Run =370 МПа (табл. 51* [1]).

Модуль упругости стали Е = 2,06×105 МПа. Коэффициент поперечной деформации (Пуассона) n=0,3 (табл. 63 [1]).

Для сооружений II уровня ответственности коэффициент надежности по ответственности gn = 0,95 (прил. 7* [ 2 ]).

Коэффициент условий работы настила и прокатных балок gс = 1,0 (табл. 6* [1]). Коэффициенты надежности по нагрузке для постоянной нагрузки gfg = 1,05 (табл. 1 [2]), для временной нагрузки gfv = 1,20 (п.3.7 [2]).

Предельные относительные прогибы для настила и балок принимаются в зависимости от величины пролета по табл.19 [2]. При l £ 1 м – fu = l/120, при l = 3 м – fu = l/150, при l = 6 м – fu = l/200

 

1.2 Выбор вариантов компоновочных схем

 

Для сравнения принимаем два варианта компоновочных схем: балочную клетку нормального типа и усложненного.

Вариант 1. Принимаем нормальный тип балочной клетки. Определяем возможное отношение пролета настила к его толщине, предварительно вычислив:

 

 

и задавшись n0 = lsh / fsh = 130, при величине временной нагрузки для расчета настила по второму предельному состоянию

 

nn = g n v0 = 0,95×0,0024 = 0,00228 кН/см2 ,

 

Для величины временной нагрузки v0 = 24 кН/м рекомендуемая толщина настила 10-12мм. Принимая толщину настила 10 мм, получим предельный пролет настила


 

Поскольку пролет настила равен расстоянию между краями полок балок настила, то предельный шаг балок, при предварительно принятой ширине полки bf, fb = 13 см, равен

afb, u = lsh + bf, fb = 121,44 + 13 = 134,44 см

Принимаем шаг балок настила из условия кратности пролету главной балки и возможности выполнения монтажного стыка главной балки в середине пролета. Принимаем число шагов 13, при этом 10 шагов по 130 см и 2 по 100 см. Расчетный шаг балок настила afb = 130 см < 134,44 см

Подбор сечения балки настила.

Погонная (линейная) нагрузка для расчета на прочность определяется по формуле

 

 

где gfb – вес 1 м.п. балки настила, принимаем gfb = 0,35 кН/м.

Линейная нагрузка для расчета на жесткость равна:

 

 

Балка настила является однопролетной, статически определимой с равномерно распределенной нагрузкой. Максимальный расчетный изгибающий момент в середине пролета балки определяется по формуле

 


Требуемый момент сопротивления

 

где с1 – коэффициент, учитывающий развитие пластических деформаций, предварительно принимаем с1 = 1,1.

Требуемый момент инерции сечения балок из условия обеспечения жесткости находим по формуле

 

 

По сортаменту (ГОСТ 26020-83) подбираем двутавр с параллельными гранями полок №35Б1, для которого I = 10060 см4, W = 581,7 см3, g = 38,9 кг/м

Вариант 2. Балочная клетка усложненного типа. Как и в первом варианте, толщину настила принимаем 10 мм, при котором максимальный шаг балок 134,44 см. При расстоянии между главными балками 5,5 м количество шагов балок настила равно n = 550/134,44 =4,1, округлив до 5, получим шаг балок настила

а fb = 550/5 = 110 см.

Шаг вспомогательных балок при их пролете l’ fb = 5 м определяем по формуле [9]

 

 

Принимаем конструктивно удобный шаг вспомогательных балок а’ fb = lfb = 3 м (схема балочной клетки приведена на рис.1.1)

В данном случае балки настила имеют пролет 3 м и шаг 1,375 м. Тогда погонная (линейная) нагрузка для расчета на прочность определяется по формуле

 

 

где gfb – вес 1 м.п. балки настила, принимаем gfb=0,25 кН/м.

линейная нагрузка для расчета на жесткость равна:

Балка настила является однопролетной, статически определимой с равномерно распределенной нагрузкой. Максимальный расчетный изгибающий момент в середине пролета балки определяется по формуле

 

 

Требуемый момент сопротивления

 

 

Требуемый момент инерции сечения балок из условия обеспечения жесткости находим по формуле:

 

 

По сортаменту (ГОСТ 26020-83) подбираем двутавр с параллельными гранями полок №20Б1, для которого I = 1943см4, W = 194,3 см3, g = 22,4 кг/м

Аналогично подбираем сечение вспомогательной балки, пролет которой l’ fb = 5,5 м и шаг а’ fb = 3 м. Балка загружена сосредоточенными силами (реакциями балок настила), которых 4. На стадии вариантного проектирования можно считать, что вспомогательные балки загружены равномерно распределенной нагрузкой

 

 

По сортаменту (ГОСТ 26020-83) подбираем двутавр с параллельными гранями полок №45Б2, для которого I = 28870 см4,

W = 1291,9 см3, g = 67,5 кг/м

 



Дата: 2019-12-22, просмотров: 262.