Технологическая карта
№ | Единицы измерения | Диапазон измерений | Условия работы | Инерционность процесса | Параметр |
54д | t, C | 0-150 | Нормальные | Инерционный | Тем-ра на выходе |
53а | t, C | 0-900 | Нормальные | Инерционный | Тем-ра на входе |
41а | м3/ч | 0-9000 | Нормальные | Инерционный | Расход 1-ого воздуха |
38а | м3/ч | 0-25000 | Нормальные | Инерционный | Расход 2-ого воздуха |
51а | м3/ч | 0-20 | Кислотная среда | Инерционный | Расход пульпы |
47а | м3/ч | 0-900 | Взрывобезопасное исполнение | Инерционный | Расход газа |
48а | кгс/см2 | 0-900 | Взрывобезопасное исполнение | Инерционный | Давление газа |
Для повышения качества продукта автоматизируем контур регулирования связанный с регулированием температуры на выходе БГС, так как именно этот контур является самым важным в получении готового продукта. Автоматизация других приборов не приведет к значительному повышению производительности, поэтому экономически не выгодна.
Описание элементной базы
Блок преобразования сигнала термопар БПТ-22
1.1 Блок БПТ-22, предназначен для преобразования сигналов низкого уровня и термопар типа ТХА(K), ТХК(L), ТВР, ТПП(S), ТПР(B) в унифицированный сигнал постоянного тока 0-5 мА,0-20 мА, 4-20 мА. Блок БПТ-22 имеет два идентичных, гальванически не связанных канала преобразования. Блок обеспечивает компенсацию термо Э.Д.С. свободных концов термопары, а также подавление нуля входного сигнала и масштабирование диапазона измерения входног осигнала.
1.2 Оба канала БПТ-22 рассчитаны на подключение одинаковых термопар, имеющих одинаковую настройку. БПТ-22 может использоваться не только для преобразования сигнала термопар, но также для усиления напряжения низкого уровня (0÷100) мВ, полученного от источника Е.
1.3 Преобразователь может быть использован в системах автоматизированного регулирования и управления технологическими процессами в энергетике, металлургии, в измерительных системах и измерительно-вычислительных комплексах.
2.1 Основные технические характеристики БПТ-22 приведены в табл. 1 и 2.
Таблица 1
Название параметра и размер | Единица измерения | Норма |
1 Количество независимых каналов | шт. | 2 |
2 Схема подключения датчика | Двухпроводная | |
3 Начальное значение входного сигнала | мВ | 0; 2; 4; 6; 8; 10; 12; 14; 16; 18; 20; 25; 30; 40. |
4 Номинальный диапазон изменения входного сигнала | мВ | 1;2;5; 10; 15; 25; 40; 60; 80; 100. |
5 Сопротивление нагрузки для выходного сигнала: 0-5мА, не более 0-20мА, не более 4-20мА, не более | Ом | 2000 500 500 |
6 Основная погрешность преобразования входного сигнала, выраженная в процентах от номинального диапазона изменения выходного сигнала не превышает | % | ± 0,25 - для блоков с диапазоном изменения входного сигнала ∆U≥ 10 мВ ± [0,25+0,25*(10/∆U-1)] - для блоков с диапазоном изменения входного сигнала ∆U< 10 мВ |
7 Напряжение питания, от неста-билизированого источника постоянного тока | В | 24 ±15% |
8 Ток потребления, не более | мА | 120 |
9 Габаритные размеры | мм | 125x75x26 |
10 Степень защиты | IP30 | |
11 Масса, не более | кг | 0,2 |
Таблица 2 - |
| ||||
Тип Датчика | ТПР(B), Е | ТПП(S) | ТВР | ТХА(K) | ТХК(L) |
Коэффициент преобразования | 0 | 0,0060 | 0,0126 | 0,0404 | 0,0660 |
2.2 По стойкости к климатическому воздействию БПТ-22 отвечает исполнению УХЛ категории размещения 4.2 по ГОСТ 15150 - 69, но для работы при температуре от +1 до +40 °С. При внешнем принудительном охлаждении корпуса допускается работа при температуре до +50 °С.
2.3 По стойкости к механическому воздействию БПТ-22 выполнены в вибростойком исполнении L3, по защите от действия окружающей среды в обычном исполнении по ГОСТ 2997-84.
2.4 Блок БПТ-22 может эксплуатироваться только в закрытых взрывобезопасных
помещениях.
2.5 Средний срок эксплуатации не менее 10 лет.
2.6 Средний срок хранения 1 год в условиях по группе 1 ДСТ 20790 - 82.
2.7 Граница допустимого значения дополнительной погрешности преобразования при изменении напряжения питания от номинального значения в границах указанных в таблицы 1 не превышает ±0,1% от диапазона изменения соответствующего сигнала.
2.8 Граница допустимого значения дополнительной погрешности преобразования при изменении температуры окружающей среды на каждые 10 °С в диапазоне от 1 до 50 °С не превышает ±0,2% от диапазона изменения соответствующего сигнала.
2.9 Граница допустимого значения дополнительной погрешности преобразования при действии постоянных магнитных полей или переменных полей сетевой частоты с напряженностью до 400 А/м не превышает ±0,2% от диапазона изменения соответствующего сигнала.
2.10 Величина пульсации выходного тока не превышает половины границы допустимого значения основной погрешности.
Принцип работы блока
Блок схема преобразователя, приведенная на рисунке 1. Преобразователь состоит из следующих основных функциональных узлов:
Рисунок 1 - Блок-схема преобразователя БПТ-22.
М - мостовая схема;
У - трёх каскадный усилитель;
ОС - цепь отрицательной обратной связи;
В1, В2-источники питания;
ИОН -источник образцового напряжения;
С, Г, Т-стабилизатор, генератор Роера с развязывающим трансформатором;
4.3 С помощью мостовой схемы осуществляется компенсация нулевого начального значения входного сигнала. Мостовая схема блоков, предназначенных для работы с термопарами типов ТХА, ТХК, ТВР, ТПП дополнительно осуществляет автоматическую компенсацию термо Е.Д.С. свободных концов термопары с помощью медного чувствительного элемента Rк, включённого в плечо моста и установленного вблизи места подключения свободных концов термопары ТП в клеммной колодке.
4.4 Выходной сигнал блока суммированый с выходным напряжением мостовой схемы, поступает на входной каскад усилителя канала, являющийся одновременно активным фильтром. На выходе первого каскада включён дополнительный RC - фильтр, который совместно с первым каскадом обеспечивает необходимое подавление поперечной помехи.
4.5 Второй и третий каскад обеспечивают усиление по мощности до унифицированного сигнала постоянного тока. Все каскады усилителя охвачены отрицательной обратной связью по выходному току.
4.6 Источники В1 (В2) обеспечивают напряжения необходимые для питания каскадов усилителя, а также источника образцового напряжения ИОН, который формирует образцовое напряжение для питания мостовой схемы.
4.7 Для обеспечения помехозащищённости и гальванического разделения каналов друг от друга питание каждого канала усилителя осуществляется от отдельной обмотки развязывающего трансформатора Т, являющегося частью схемы генератора Роера Г. Генератор Роера стабилизирован по питанию стабилизатором С.
Микроконтроллер АТ89С2051
• Совместимость с приборами семейства MCS-51™
• Емкость перепрограммируемой Flash памяти: 2 Кбайт, 1000 циклов стирание/ запись
• Диапазон рабочих напряжений от 2,7 В до 6 В
• Полностью статический прибор - диапазон рабочих частот от 0 Гц до 24 МГц
• Двухуровневая блокировка памяти программ
• СОЗУ емкостью 128 байтов
• 15 программируемых линий ввода/вывода
• Два 16-разрядных таймера/счетчика событий
• Шесть источников сигналов прерывания
• Программируемый последовательный канал UART
• Выходы прямого управления СИД
• Встроенный аналоговый компаратор
• Пассивный (idle) и стоповый (power down) режимы
• Промышленный (-40°С...85°С) и коммерческий (0°С...70°С) диапазоны температур
• 20-выводные корпуса PDIP и SOIC
КМОП микроконтроллер АТ89С2051, оснащенный Flash программируемым и стираемым ПЗУ, совместим по системе команд и по выводам со стандартными приборами семейства MCS-51™. Микроконтроллер содержит 2 Кбайта Flash ПЗУ, 128 байтов ОЗУ, 15 линий ввода/вывода, два 16-разрядных таймера/счетчика событий, полнодуплексный последовательный порт (UART), пять векторных двухуровневых прерываний, встроенный прецизионный аналоговый компаратор, встроенные генератор и схему формирования тактовой последовательности. Программирование Flash памяти программ ведется с использованием напряжения 12 В, ее содержимое может быть защищено от несанкционированных записи/считывания. Имеется возможность очистки Flash памяти за одну операцию, возможность считывания встроенного кода идентификации.
Потребление в активном режиме на частоте 12 МГц не превышает 15 мА и 5,5 мА при напряжении питания 6 В и 3 В, соответственно. При тех же условиях в пассивном режиме, при котором остановлено ЦПУ но система прерываний, ОЗУ, таймер/ счетчик событий и последовательный порт остаются активными, потребление не превышает 5 мА и 1 мА. В стоповом режиме потребление не превышает 100 мкА и 20 мкА при напряжении питания 6 В и 3 В, соответственно.
Расходомер Метран - 335
Принцип измерения расхода – вихревой. Диаметр условного прохода многопараметрического датчика: 32, 50, 80, 100, 150 мм.
Пределы измерений расхода при рабочих условиях 6...5000 м3/ч. Динамический диапазон по расходу 1:30. Взрывозащищенное исполнение. Связь с внешними устройствами вычислительной техники.
Основные преимущества:
· одновременное измерение 3-х параметров среды (F, Р, Т) одним многопараметрическим датчиком;
· существенное сокращение кабельных линий и врезок в трубопровод, удобство монтажа;
· отсутствие подвижных элементов в проточной части;
· снижение потерь давления по сравнению с измерением расхода методом перепада давлений на диафрагме и турбинными расходомерами;
· возможность эксплуатации многопараметрического датчика Метран-335 в помещениях категории В-1а, В-16, а также на открытом воздухе;
· архивирование данных по часам, суткам и месяцам;
· сохранение архивных данных в течение 5 лет, в т.ч и при отсутствии питания;
· защита от несанкционированного доступа;
· возможность построения сети сбора данных.
Технические характеристики
· Измеряемая среда: природный газ, сжатый воздух, технические газы.
· Параметры измеряемой среды: температура от -20 до 50 °С; избыточное давление в трубопроводе до 1,6 МПа; плотность при нормальных условиях: 0,6…1,3 кг/м3.
· Динамический диапазон по расходу 1:30
· Пределы измерений расхода при рабочих условиях (РУ) и исполнения по давлению приведены в табл.1, 2 соответственно.
Таблица 1
Диаметр условного прохода датчика Dy, мм | Расход газа при РУ, м3/ч | ||
минимальный, Fmin | номинальный, Fhom | максимальный, Fmax | |
32* | 6 | 80 | 160 |
50 | 15 | 265 | 530 |
80 | 30 | 500 | 1000 |
100 | 80 | 1250 | 2500 |
150 | 150 | 2500 | 5000 |
Таблица 2
Параметр | Исполнение по давлению | |||
Максимальное рабочее избыточное давление, МПа | 0,25 | 0,6 | 1,0 | 1,6 |
Диапазон рабочих избыточных давлений, МПа | 0...0.25 | 0,2...0,6 | 0,3...1,0 | 0,5...1,6 |
Метрологические характеристики
Таблица 3
Основная допускаемая погрешность измерений | Относительная, % | Абсолютная | |||
Параметр | Расход при РУ | Объем при РУ | Время | Избыточное давление, МПа | Температура, °С |
Предел | ±2,0 | ±1,5 | ±0,01 | ±(0,001+0,01 Р), где Р - измеренное давление | ±0,5 |
· Выходной сигнал датчика для связи с вычислителем - цифровой код по 4-м параметрам F,V,P,T.
· Длина кабеля связи до 300 м.
· Интерфейсы для связи RS232C, RS485.
· Подключаемые устройства вычислительной техники: ПК, принтер с последовательным интерфейсом (EPSON LX или
аналогичный), Hayes-совместимый модем (US Robotics или аналогичный).
· Возможность организации сети сбора данных с передачей информации по коммутируемым телефонным линиям.
Максимальное количество счетчиков, объединяемых в сеть - 256 шт.
· Программное обеспечение для диспетчеризации и связи с ПК входит в комплект поставки.
· Настройка счетчика производится на заводе-изготовителе или пользователем с ПК.
Устройство и принцип действия
Конструктивно датчик представляет собой моноблок, состоящий из корпуса проточной части и электронного блока. В корпусе проточной части датчика размещены первичные преобразователи объемного расхода, избыточного давления и температуры.
Электронный блок представляет собой плату цифровой обработки сигналов первичных преобразователей, заключенную в корпус.
Измерение расхода газа реализовано на вихревом принципе действия. На входе в проточную часть датчика установлено тело обтекания. За телом обтекания, по направлению потока газа, симметрично расположены два пьезоэлектрических преобразователя пульсаций давления. При протекании потока газа через проточную часть датчика за телом обтекания образуется вихревая дорожка, частота следования вихрей в которой с высокой точностью пропорциональна скорости потока, а, следовательно, и расходу. В свою очередь, вихреобразование приводит к появлению за телом обтекания пульсаций давления среды. Частота пульсаций давления идентична частоте вихреобразования и в данном случае служит мерой расхода.
Пульсации давления воспринимаются пьезоэлектрическими преобразователями, сигналы с которых в форме электрических колебаний поступают на плату цифровой обработки, где происходит вычисление объемного расхода и объема газа при РУ и формирование выходных сигналов по данным параметрам в виде цифрового кода.
Преобразователь избыточного давления тензорезистивного принципа действия размещен перед телом обтекания вблизи места его крепления. Он осуществляет преобразование значения избыточного давления потока в трубопроводе в электрический сигнал, который с выхода мостовой схемы преобразователя поступает на плату цифровой обработки.
Термопреобразователь сопротивления платиновый размещен внутри тела обтекания. Для обеспечения непосредственного контакта ТСП со средой в теле обтекания выполнены отверстия . Электрический сигнал термопреобразователя также подвергается цифровой обработке.
Плата цифровой обработки, содержащая два микропроцессора, производит обработку сигналов преобразователей пульсаций давления, избыточного давления и температуры, в ходе которой обеспечивается фильтрация паразитных составляющих, обусловленных влиянием вибрации, флуктуации давления и температуры потока, и происходит формирование выходных сигналов многопараметрического датчика по расходу, объему при РУ, давлению и температуре в виде цифрового кода, выходные сигналы передаются на вычислитель.
Проточная часть датчика и тело обтекания выполнены из стали 12Х18Н10Т.
Дата: 2019-12-10, просмотров: 231.