Классификация и общая характеристика медно-никелевых сплавов
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Введение

 

В группу медно-никелевых сплавов входят такие сплавы на основе меди, в которых никель является основным легирующим компонентом, оказывающим решающее влияние на свойства. В зависимости от содержания никеля и других легирующих компонентов, такие сплавы обладают различными физико-механическими характеристиками: прочностью, пластичностью, коррозионной стойкостью, жаропрочностью и жароупорностью и другими свойствами.

Медно-никелевые сплавы используются в различных областях промышленности, начиная от судостроения и заканчивая изготовлением деталей прецизионных механизмов. Очень часто изделия из медно-никелевых сплавов работают в агрессивных коррозивных средах: морской воде, парах воды и других газах.

Именно поэтому исследования коррозионного поведения медно-никелевых сплавов в различных условиях широко проводились и проводятся.

Целью данной работы является изучение термодинамики химической и электрохимической устойчивости мельхиоров МН19 и МНЖМц30–1–1.

 

 



Литературный обзор

Медно-никелевые сплавы

Диаграмма состояния системы Cu – Ni

 

Диаграмма состояния медь – никель приведена на рис. 1.1.

 

Рис. 1.1. Диаграмма состояния Cu – Ni.

 

В интервале температур 1000–1500 °С исследование проведено с использованием катодной Сu чистотой 99,99% (по массе) и электролитического Ni чистотой 99,95% (по массе) методом микрорентгеноспектрального анализа образцов, закаленных из твердожидкого состояния. Результаты работы хорошо совпадают с данными,

полученными методами термического, металлографического и микрорентгеноспектрального анализов в области концентраций 0–100% (ат.) Ni. Система Сu–Ni характеризуется образованием в процессе кристаллизации непрерывного ряда твердых растворов (Сu, Ni) с гранецентрированной кубической (далее – ГЦК) структурой. По данным спектрального анализа установлено равновесие Ж↔Г с азеотропным минимумом при температуре 2500 °С и концентрации 50 – 60%; (ат.) Ni; указывается на наличие области расслоения на две фазы (газообразный и жидкий растворы разного состава) при концентрации 60 – 100% (ат.) Ni. В интервале концентраций 0 – 60% (ат.) Ni область расслоения настолько узка, что практически вырождается в прямую линию.

Граница расслаивания твердого раствора и критическая точка несмешиваемости, соответствующая концентрации никеля 69,7% (ат.) и температуре 342 °С приведена на основании расчета, проведенного по термодинамическим константам [9].

При температурах ниже 342˚С раствор расслаивается на 2 фазы: α-фазу (твёрдый раствор на основе меди с ГЦК решёткой) и γ-фазу (твёрдый раствор на основе никеля с ГЦК решёткой).

 

Экспериментальная часть

Обсуждение результатов

 

В работе определены активности компонентов мельхиоров МН19 и МНЖМц30–1–1. Установлено, что активность железа в мельхиоре МНЖМц30–1–1 выше единицы. Это означает, что мельхиор МНЖМц30–1–1 является метастабильной системой. При старении сплава железо выделяется из мельхиора в свободном виде в качестве новой фазы. Это вызывает упрочнение сплава и улучшение коррозионной стойкости против ударной коррозии, что подтверждает литературные данные [1].

Построена диаграмма состояния Cu – Ni – O и проанализирована химическая устойчивость медно-никелевых сплавов. Установлено, что медно-никелевые сплавы окисляются кислородом воздуха в нормальных условиях. Подтверждено, что окисление никеля из сплава на воздухе заканчивается образованием фазы нестехиометрического состава NiOx, что подтверждается диаграммой состояния Ni – O (рис. 1.4., [14]). Однако установлено, что в нормальных условиях и при повышенной температуре соединение NiO2 не образуется, что не подтверждается диаграммой 1.4.

Построены диаграммы рН – потенциал систем МН19 – Н2О и МНЖМц30–1–1 – Н2О и проанализирована электрохимическая устойчивость мельхиоров. Подтверждены литературные данные о высокой коррозионной стойкости МНЖМц30–1–1. Установлено, что область активного растворения сплава при высоких активностях ионов в растворе мала и сплав подвержен коррозии только в кислых средах, а в нейтральных и щелочных на его поверхности образуется пассивирующая плёнка [1, 4, 6].

 

 



Выводы

 

1) В работе в рамках обобщённой теории «регулярных» растворов рассчитаны температурные зависимости энергий смешения компонентов бинарной системы Cu – Ni.

2) Рассчитаны активности компонентов мельхиоров МН19 и МНЖМц30–1–1.

3) На основании построенной при 25оС диаграммы состояния Cu – Ni – О, проанализирована химическая устойчивость медно-никелевых сплавов.

4) Оценена область гомогенности фазы NiOx при различных температурах в равновесии с атмосферным воздухом.

5) На основании построенных диаграмм рН – потенциал систем МН19 – Н2О и МНЖМц30–1–1 – Н2О при 25оС и различных активностях ионов в растворе проанализирована электрохимическая устойчивость мельхиоров, определены области их различного коррозионного поведения.

 

 



Список литературы

 

1. Смирягин А.П. Промышленные цветные металлы и сплавы. М.: Металлургиздат, 1974. 559 с.

2. Лахтин Ю.М., Леонтьева В.П. Материаловедение. М.: Машиностроение, 1990. 527 с.

3. Краткая химическая энциклопедия/ Гл. ред. Кнунянц И.Л.

М.: Советская энциклопедия, 1964. Т. 3. С. 70 – 74.

4. Червяков В.И., Маркосьян Г.Н., Пчельников А.П. Коррозионное поведение медно-никелевых сплавов в нейтральных хлоридных сульфидсодержащих растворах // Защита металлов, 2004. Т. 40. №2. С. 123 – 127.

5. Кузнецов Ю.И., Рылкина М.В. Некоторые особенности локальной депассивации бинарных сплавов // Защита металлов, 2004. Т. 40. №5. С. 505 – 512.

6. Сирота Д.С., Пчельников А.П. Электрохимическое поведение α-фазы системы Cu30Ni – H в растворах гидроксида натрия // Защита металлов, 2005. Т. 41. №6. С. 652 – 655.

7. Сирота Д.С., Пчельников А.П. Электрохимическое поведение β-фазы системы Cu30Ni – H в растворах гидроксида натрия // Защита металлов, 2005. Т. 41. №6. С. 598 – 601.

8. Маркосьян Г.Н., Сирота Д.С., Пчельников А.П. Коррозия гидридов никеля и сплава Cu30Ni в кислородсодержащих растворах // Защита металлов, 2005. Т. 41. №4. С. 390 – 394.

9. Диаграммы состояния двойных металлических систем/ Под ред. Лякишева Н.П.М.: Машиностроение, 1997. Т. 2. С. 283 – 286.

10. Тюрин А.Г. Моделирование термодинамических свойств растворов. Челяб. гос. ун-т. Челябинск, 1997. 74 с.

11. Николайчук П.А. Определение термодинамических активностей компонентов бронзы БрБ2: Курсовая работа/ Челяб. гос. ун-т. Челябинск, 2006. 29 с.

12. Ермолаева И.В. Термодинамика химической и электрохимической устойчивости латуни ЛЦ40Мц1,5 (ЛМц58,5–1,5): Дипломная работа/ Челяб. гос. ун-т. Челябинск, 2004. 70 с.

13. Тюрин А.Г. Термодинамика химической и электрохимической устойчивости сплавов. Ч. 1. Общие принципы. Высокотемпературное окисление. Челяб. гос. ун-т. Челябинск, 2004. 86 с.

14. Тюрин А.Г. Термодинамика химической и электрохимической устойчивости сплавов. Ч. 2. Низкотемпературное окисление. Челяб. гос. ун-т. Челябинск, 2004. 91 с.

15. Справочник по электрохимии/ Под ред. Сухотина А.М.Л.: Химия, 1981. 488 с.

16. Тюрин А.Г. О природе влияния меди на коррозионную стойкость железа // Защита металлов, 2004. Т. 40. №3. С. 256 – 262.

17. Равновесные превращения металлургических реакций/ Рузинов Л.П., Гуляницкий Б.С.М.: Металлургия, 1975. 416 с.

 

Введение

 

В группу медно-никелевых сплавов входят такие сплавы на основе меди, в которых никель является основным легирующим компонентом, оказывающим решающее влияние на свойства. В зависимости от содержания никеля и других легирующих компонентов, такие сплавы обладают различными физико-механическими характеристиками: прочностью, пластичностью, коррозионной стойкостью, жаропрочностью и жароупорностью и другими свойствами.

Медно-никелевые сплавы используются в различных областях промышленности, начиная от судостроения и заканчивая изготовлением деталей прецизионных механизмов. Очень часто изделия из медно-никелевых сплавов работают в агрессивных коррозивных средах: морской воде, парах воды и других газах.

Именно поэтому исследования коррозионного поведения медно-никелевых сплавов в различных условиях широко проводились и проводятся.

Целью данной работы является изучение термодинамики химической и электрохимической устойчивости мельхиоров МН19 и МНЖМц30–1–1.

 

 



Литературный обзор

Медно-никелевые сплавы

Классификация и общая характеристика медно-никелевых сплавов

Медно-никелевые сплавы по механическим, физико-химическим свойствам и областям применения можно условно разделить на следующие основные группы: конструкционные, термоэлектродные, сплавы сопротивления и сплавы с особыми свойствами [1].

В России маркировку сплавов проводят следующим образом:

Каждый элемент, входящий в сплав имеет своё собственное буквенное обозначение. Некоторые из них представлены в табл. 1.1.

 

Табл. 1.1. Буквенные обозначения некоторых элементов в России

Элемент Обозначение Элемент Обозначение
Zn Ц Pb С
Mn Мц Fe Ж
Al А Si К
Ni Н P Ф
Sn О Ti Т
Be Б Cr Х
Cu М

 

Название сплава состоит из букв элементов, входящих в него. Вначале ставятся буквы основных компонентов, определяющих свойства сплава, а затем буквы остальных компонентов в порядке уменьшения содержания этих элементов в сплаве. Среднее содержание элементов в сплаве указывается цифрами, разделёнными тире, сразу после буквенного обозначения сплава в том же порядке, в котором расположены буквы элементов в названии сплава. Содержание основного компонента не указывается, а рассчитывается как разность 100% и суммарного содержания всех легирующих компонентов.

Например, сплав МН10 содержит в своём составе 10% (по массе) никеля (Н), остальное – медь (М). Сплав МНЦС16–29–1,8 содержит в своём составе 16% никеля (Н), 29% цинка (Ц), 1,8% свинца (С), остальное – медь (М) [2].

К конструкционным сплавам относят мельхиоры, нейзильберы и некоторые другие сплавы. Их применяют для изготовления деталей с повышенными механическими и коррозионными свойствами (см. табл. 1.2.).

 

Табл. 1.2. Свойства и назначения некоторых конструкционных медно-никелевых сплавов

Название и марка сплава

Типичные механические свойства

Примерное назначение

Мельхиор МН19 35 35 70 Медицинский инструмент, детали точной механики, изделия широкого потребления
Мельхиор МНЖМц30–1–1 38 45 70 Трубы для конденсаторов
Нейзильбер МНЦ15–20 40 45 70 Детали приборов точной механики, техническая посуда, художественные изделия, изделия широкого потребления

 

Мельхиоры содержат 20 – 30% никеля и часто дополнительно легируются железом и марганцем. Нейзильберы относятся к тройной системе Cu – Ni – Zn и содержат 5 – 35% никеля и 13 – 45% цинка [3].

Также в группу конструкционных сплавов входят нейзильбер МНЦС16–29–1,8, используемый в производстве деталей часовых механизмов, куниали МНА6–1,5 и МНА13–3, из которых изготовляют детали повышенной прочности и пружины ответственного назначения, сплавы МН5 и МНЖ5–1, используемые в производстве прутьев и труб и другие сплавы.

Важнейшими представителями термоэлектродных сплавов являются хромель, алюмель, копель и сплавы для компенсационных проводов. Эти сплавы отличаются большой электродвижущей силой и высоким удельным электросопротивлением при малом температурном коэффициенте электросопротивления. Применяются они для изготовления прецизионных приборов, термопар и компенсационных проводов к ним.

Например, копель (МНМц43–0,5) применяют для создания радиотехнических приборов и в пирометрии, сплав МН0,6 – как компенсационные провода к платино-платинородиевым термопарам, а сплав МН16 – как компенсационные провода к платино-золотым и палладий-платинородиевым термопарам.

Наконец, к группе сплавов сопротивления и сплавов с особыми свойствами относятся сплавы, обладающие высокой жаропрочностью и жароупорностью и применяющиеся для изготовления разного рода электронагревательных приборов и электропечей.

Например, константан (МНМц40–1,5) применяется для производства реостатов, термопар, нагревательных приборов, работающих при температурах до 500оС. Манганин (МНМц3–12) используется в производстве электроизмерительных приборов и приборов электросопротивления, работающих при температурах ниже 100оС [1].

 

Дата: 2019-12-10, просмотров: 228.