Итак, на первом этапе двухэтапного метода отыскивается начальное допустимое решение. Для этого выполним следующие действия:
1. Строим искусственную целевую функцию – сумму всех искусственных
переменных:
W = X9 + X10 Þ min
2. Так как целевая функция должна быть выражена только через небазисные
переменные, то выражаем искусственные переменные X9 и X10 через небазисные переменные, а затем, упростив полученное выражение, переписываем искусственную целевую функцию:
X9 = - 2X1 + X2 - 6X4 + 3X5;
X10 = - 2X1 + 2X3 - 6X4 + 2X6.
W = - 4X1 + X2 + 2X3 – 12X4 + 3X5 + 2X6 Þ min
3. Для приведения к стандартной форме направим искусственную целевую
функцию на максимум, для этого умножим обе ее части на –1:
-W = 4X1 - X2 - 2X3 + 12X4 - 3X5 - 2X6 Þ max
4. Определяем начальное, недопустимое решение. Базис состоит из четырех
переменных, из них две искусственные, остальные две - остаточные. Базисные переменные принимают значения, равные ограничениям задачи. Остальные переменные считаем равными нулю. В этом случае целевая функция Е принимает значение 0, искусственная целевая функция – W также принимает значение 0.
5. Составляем исходную симплекс-таблицу:
БП | X 1 | X 2 | X 3 | X 4 | X 5 | X 6 | X 7 | X 8 | X 9 | X 10 | БР |
E | -1 | -1 | -2 | -3 | -3 | -2 | 0 | 0 | 0 | 0 | 0 |
-W | -4 | 1 | 2 | -12 | 3 | 2 | 0 | 0 | 0 | 0 | 0 |
X 7 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 8 |
X 8 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 8 |
X 9 | 2 | -1 | 0 | 6 | -3 | 0 | 0 | 0 | 1 | 0 | 0 |
X 10 | 2 | 0 | -2 | 6 | 0 | -2 | 0 | 0 | 0 | 1 | 0 |
Таблица 2 . Симплекс-таблица №1.
Итак, в первом столбце таблицы указаны базисные переменные, в последнем столбце - их значения, а так же значения целевой и искусственной целевой функций. В заголовке таблицы перечисляются все используемые переменные. В строках таблицы указываются коэффициенты ограничений задачи.
6. Реализуем первый этап двухэтапного метода: с помощью процедур симплекс-
метода выполняем максимизацию функции - W. При этом переменные, включаемые в базис, выбираются по W-строке (т.е. на каждом цикле в базис включается переменная, которой соответствует максимальный по модулю отрицательный элемент в W-строке; столбец, соответствующий этой переменной, становится ведущим). В нашем случае это столбец X 4, т. к. коэффициент при этой переменной в W-строке равен –12. Ведущую строку определяем следующим образом: рассчитываем так называемые симплексные отношения, т. е. отношения текущих значений базисных переменных к положительным коэффициентам ведущего столбца, соответствующим данным базисным переменным. Затем берем минимальное из этих отношений и по тому, какой строке оно соответствует, определяем ведущую строку. У нас есть три таких отношения: по переменной Х 8 (8/1=8), Х 9 (0/6=0) и Х 10 (0/6=0). Получилось два минимальных значения, значит, возьмем любое из них, например по переменной Х 9. После находим ведущий элемент, он расположен на пересечении ведущей строки и ведущего столбца (в нашем случае он равен 6). Затем определяем переменные, которые будем исключать из базиса и включать в него. Переменную, которой соответствует ведущий столбец, будем включать в базис вместо переменной, которой соответствует ведущая строка. Далее все преобразования выполняем по обычным формулам симплекс-метода или по "правилу прямоугольника". Преобразованиям подвергается вся симплекс-таблица, включая E-строку, W-строку и столбец решений. Получаем новую симплекс-таблицу:
БП | X 1 | X 2 | X 3 | X 4 | X 5 | X 6 | X 7 | X 8 | X 9 | X 10 | БР |
E | 0 | -1,5 | -2 | 0 | -4,5 | -2 | 0 | 0 | 0,5 | 0 | 0 |
-W | 0 | -1 | 2 | 0 | -3 | 2 | 0 | 0 | 2 | 0 | 0 |
X 7 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 8 |
X 8 | -0,33 | 0,17 | 0 | 0 | 1,5 | 1 | 0 | 1 | -0,17 | 0 | 8 |
X 4 | 0,33 | -0,17 | 0 | 1 | -0,5 | 0 | 0 | 0 | 0,17 | 0 | 0 |
X 10 | 0 | 1 | -2 | 0 | 3 | -2 | 0 | 0 | -1 | 1 | 0 |
Таблица 3 . Симплекс-таблица №2.
Мы получили новое решение (Х 7 ,Х 8 ,Х 4 ,Х 10 )=(8,8,0,0). Это решение недопустимо, так как в базисе содержится искусственная переменная Х 10. Выполим очередную итерацию. По строке –W для включения в базис выбираем переменную X 5 (т.к. –3 – максимальное по модулю отрицательное число). Столбец X 5 становится ведущим. По минимальному симплексному отношению ( 8/1,5=5,33; 0/3=0) для исключения из базиса выбираем переменную Х 10. Ведущий элемент равен 3. После проведенных пересчетов получаем новую симплекс-таблицу:
БП | X 1 | X 2 | X 3 | X 4 | X 5 | X 6 | X 7 | X 8 | X 9 | X 10 | БР |
E | 0 | 0 | -5 | 0 | 0 | -5 | 0 | 0 | -1 | 1,5 | 0 |
-W | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
X 7 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 8 |
X 8 | -0,33 | -0,33 | 1 | 0 | 0 | 2 | 0 | 1 | 0,33 | -0,5 | 8 |
X 4 | 0,33 | 0 | -0,33 | 1 | 0 | -0.33 | 0 | 0 | 0 | 0,17 | 0 |
X 5 | 0 | 0,33 | -0,67 | 0 | 1 | -0,67 | 0 | 0 | -0,33 | 0,33 | 0 |
Таблица 4 . Симплекс-таблица №3.
Дата: 2019-12-10, просмотров: 257.