Выполнил                                                          Борденюк В.М                                                                                 
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

МИНИСТЕРСТВО ОБРАЗОВАНИЯ                      РЕСПУБЛИКИ МОЛДОВА

Технический Университет Молдовы

 

Факультет Радиоэлектроники

 

Кафедра Телекоммуникаций

Курсовая работа

На тему:

 

 

Матричные фотоприемники

 

Выполнил                                                          Борденюк В.М                                                                                 

 студент                                                                                                                                                                                                                                                                                                                                                                       Гр. TLC-023                                                  

Проверил

ПРАКТИЧЕСКАЯ ЧАСТЬ

 

Расчет КПД фотодиода.

 

КПД вычисляется по формуле:

 

 ,

 

где Pосв – мощность освещенности, I – сила тока , U – напряжение на фотодиоде.

 

 

Максимальная мощность фотодиода соответствует максимальной площади данного прямоугольника.

 

 

Мощность Освещенности, МВт Сила тока, мА Напряжение, В КПД, %
1 0.0464 0.24 1.1
3 0.1449 0.41 2
5 0.248 0.26 1.3
7 0.242 0.45 1.6

 

     Среднее значение: 1.5%.

 

Вывод: коэффициент полезного действия фотодиода согласно полученным данным составил в среднем 1.5%.

                          1.5 Принципиальная схема

 1.6 ПРИМЕНЕНИЕ ФОТОДИОДА В ОПТОЭЛЕКТРОНИКЕ

Фотодиод является составным элементом во многих сложных оптоэлектронных устройствах. И поэтому он находит широкое применение.  

а) оптоэлектронные интегральные микросхемы.

Фотодиод может обладать большим быстродействием, но его коэффициент усиления фототока не превышает единицы. Благодаря наличию оптической связи оптоэлектронные интегральные микросхемы обладают рядом существенных достоинств. Почти идеальная гальваническая развязка управляющих цепей при сохранении между ними сильной функциональной связи.

б) многоэлементные фотоприемники.

Эти приборы (сканистор, мишень кремникона, фотодиодная матрица с управлением на МОП-транзисторе, фоточувствительные приборы с зарядовой связью и другие) относятся к числу наиболее быстро развивающихся и прогрессирующих изделий электронной техники. Сочетая в себе успехи физики дискретных фотоприемников и новейшие технологические достижения больших интегральных схем, многоэлементные фотоприемники вооружают оптоэлектронику твердотельным «глазом», способным реагировать не только на яркостно-временные, но и на пространственные характеристики объекта, то есть воспринимать его полный зрительный образ.

 

Для успешного выполнения этих функций необходимо, чтобы число элементарных фоточувствительных ячеек в приборе было достаточно большим, поэтому кроме всех проблем дискретного фотоприемника (чувствительность, быстродействие, спектральная область) приходится решать и проблему считывания информации. Все многоэлементные фотоприемники представляют собой сканирующие системы, то есть устройства, позволяющие производить анализ исследуемого пространства путем последовательного его просмотра (поэлементного разложения).

Принцип восприятия образов этими системами сводится к следующему. Распределение яркости объекта наблюдения превращается в оптическое изображение и фокусируется на фоточувствительную поверхность. Здесь световая энергия переходит в электрическую, причем отклик каждого элемента (ток, заряд, напряжение) пропорционален его освещенности. Яркостная картина преобразуется в электрический рельеф. Схема сканирования производит периодический последовательный опрос каждого элемента и считывание содержащейся в нем информации. В конечном счете, на выходе устройства мы получаем последовательность видеоимпульсов, в которой закодирован воспринимаемый образ.

При создании многоэлементных фотоприемников стремятся обеспечить наилучшее выполнение ими функций преобразования и сканирования.

в) оптроны.

Оптроном называется такой оптоэлектронный прибор, в котором имеются источник и приемник излучения с тем или иным видом оптической и электрической связи между ними, конструктивно объединенные и помещенные в один корпус.

 

В электронной схеме оптрон выполняет функцию элемента связи, в одном из звеньев которого информация передается оптически. Это основное назначение оптрона. Если между компонентами оптрона создать электрически обратную связь, то оптрон может стать активным прибором, пригодным для усиления и генерации электрических и оптических сигналов.

Принципиальное отличие оптронов как элементов связи заключается в использовании для переноса информации электрически нейтральных фотонов, что обуславливает ряд достоинств оптронов, которые присущи и всем остальным оптоэлектронным приборам в целом. Хотя у оптронов есть, разумеется, и свои недостатки.

Оптронная техника базируется на достижениях в области физики и технологии излучателей и фотоприемников.

Фотодиод p - i - n типа

           

В кремниевом p-i-n –диоде , который является одним из наиболее распространенных фотодетекторов , толщина i-области составляет примерно  50 мкм , а слоя p+ -- всего 3 мкм . При освещении такого диода светом с длинной волны l= 0,9мкм ( от GaAs-излучателя ) x*=30 мкм и около 80% света поглощается в i- слое. Следовательно ,практически все фотоэлектроны и дырки возникают в i- слое ,и быстродействие диода определяется временем tI  их пролета через i- слой . Дрейфовая скорость электронов в кремнии сначала растет с увеличением напряженности поля , а затем испытывает насыщение при U d ≈≈5∙106 см/с. В этихусловиях время пролета

tI  =50∙10­­­-4 см/5∙106 см/с=10­­­-9 с,

 

а время tд ,определяемое диффузией электронов из p-области или дырок из n-области (tд > tI  ) , не играет существенной роли.

  В общем случае следует учитывать еще одну составляющую tRC постоянной времени , связанную с сопротивлением R и емкостью C цепи . При малом сопротивлении нейтральных областей диода ,а также внешней цепи , при широком переходе (зарядовая емкость p-n- перехода C~d-1 , а d~√U) имеет tRC < tI  . Обнаружительная способность кремниевых фотодиодов достигает значения 1∙1013 см ∙Гц1/2 ∙Вт -1 (λ=1 мкм , Т=300 К)

Ф
М
.

М-металлические контакты, И- изолятор(SiO2), П-просветляющее покрытие.

                           2.5 Принципиальная схема

Принципиальная схема

Фоторезисторы

 

 

Фоторезисторами называют полупроводниковые приборы, проводимость которых меняется под действием света.

Конструкция монокристаллического и пленочного фоторезисторов показана на рис. 1, 2 приложения. Основным элементом фоторезистора является в первом случае монокристалл, а во втором – тонкая пленка полупроводникового материала.

Если фоторезистор включен последовательно с источником напряжения (рис. 3 приложения) и не освещен, то в его цепи будет протекать темновой ток

 

 

Iт = E / (Rт + Rн),                                     (4)

 

где Е – э. д. с. источника питания; Rт – величина электрического сопротивления фоторезистора в темноте, называемая темновым сопротивлением; Rн – сопротивление нагрузки.

При освещении фоторезистора энергия фотонов расходуется на перевод электронов в зону проводимости. Количество свободных электронно-дырочных пар возрастает, сопротивление фоторезистора падает и через него течет световой ток

 

Iс = E / (Rс + Rн).                                     (5)

 

Разность между световым и темновым током дает значение тока Iф, получившего название первичного фототока проводимости

 

Iф = Iс – Iт.                                          (6)

 

Когда лучистый поток мал, первичный фототок проводимости практически безынерционен и изменяется прямо пропорционально величине лучистого потока, падающего на фоторезистор. По мере возрастания величины лучистого потока увеличивается число электронов проводимости. Двигаясь внутри вещества, электроны сталкиваются с атомами, ионизируют их и создают дополнительный поток электрических зарядов, получивший название вторичного фототока проводимости. Увеличение числа ионизированных атомов тормозит движение электронов проводимости.

 

 В результате этого изменения фототока запаздывают во времени относительно изменений светового потока, что определяет некоторую инерционность фоторезистора.

 

Параметры фоторезисторов

 

Основные параметры фоторезисторов:

Рабочее напряжение Uр – постоянное напряжение, приложенное к фоторезистору, при котором обеспечиваются номинальные параметры при длительной его работе в заданных эксплуатационных условиях.

Максимально допустимое напряжение фоторезистора Umax – максимальное значение постоянного напряжения, приложенного к фоторезистору, при котором отклонение его параметров от номинальных значений не превышает указанных пределов при длительной работе в заданных эксплуатационных условиях.

Темновое сопротивление Rт – сопротивление фоторезистора в отсутствие падающего на него излучения в диапазоне его спектральной чувствительности.

Световое сопротивление Rс – сопротивление фоторезистора, измеренное через определенный интервал времени после начала воздействия излучения, создающего на нем освещенность заданного значения.

Кратность изменения сопротивления KR – отношение темнового сопротивления фоторезистора к сопротивлению при определенном уровне освещенности (световому сопротивлению).

Допустимая мощность рассеяния ­– мощность, при которой не наступает необратимых изменений параметров фоторезистора в процессе его эксплуатации.

Общий ток фоторезистора – ток, состоящий из темнового тока и фототока.

Фототок – ток, протекающий через фоторезистор при указанном напряжении на нем, обусловленный только воздействием потока излучения с заданным спектральным распределением.

Удельная чувствительность – отношение фототока к произведению величины падающего на фоторезистор светового потока на приложенное к нему напряжение, мкА / (лм · В)

 

К0 = Iф / (ФU),                                       (7)

 

где Iф – фототок, равный разности токов, протекающих по фоторезистору в темноте и при определенной (200 лк) освещенности, мкА; Ф – падающий световой поток, лм; U – напряжение, приложенное к фоторезистору, В.

Интегральная чувствительность – произведение удельной чувствительности на предельное рабочее напряжение Sинт = К0Umax.

Постоянная времени tф – время, в течение которого фототок изменяется на 63%, т. е. в e  раз.

 

 Постоянная времени характеризует инерционность прибора и влияет на вид его частотной характеристики.

 

При включении и выключении света фототок возрастает до максимума (рис. 8 приложения) и спадает до минимума не мгновенно. Характер и длительность кривых нарастания и спада фототока во времени существенно зависят от механизма рекомбинации неравновесных носителей в данном материале, а также от величины интенсивности света. При малом уровне инжекции нарастание и спад фототока во времени можно представить экспонентами с постоянной времени t, равной времени жизни носителей в полупроводнике. В этом случае при включении света фототок iф  будет нарастать и спадать во времени по закону

 

iф = Iф (1 – e – t / t); iф = Iф e – t / t,                           (8)

 

где Iф – стационарное значение фототока при освещении.

По кривым спада фототока во времени можно определить время жизни t неравновесных носителей.

 

Изготовление фоторезисторов

 

В качестве материалов для фоторезисторов широко используются сульфиды, селениды и теллуриды различных элементов, а также соединения типа AIIIBV. В инфракрасной области могут быть использованы фоторезисторы на основе PbS, PbSe, PbTe, InSb, в области видимого света и ближнего ультрафиолета – CdS.

 

 

Применение фоторезисторов

 

В последние годы фоторезисторы широко применяются во многих отраслях науки и техники. Это объясняется их высокой чувствительностью, простотой конструкции, малыми габаритами и значительной допустимой мощностью рассеяния. Значительный интерес представляет использование фоторезисторов в оптоэлектронике

 

Фотокатод

Конструкция каждого ФЭУ должна обеспечить оптимальные условия

попадания светового излучения на фотокатод (оптический вход ФЭУ), поэтому

применяются различные геометрические расположения фотокатода относительно

оси вакуумной колбы и различные материалы входных окон.

Для регистрации несфокусированного излучения используется торцевой

оптический вход. . В этом случае ПОЛУПРОЗРАЧНЫЙ

ФОТОКАТОД, работающий .на просвет. (излучение попадает на фотокатод со

стороны подложки), формируется при изготовлении в виде тонкой пленки

непосредственно на плоском входном окне. Диаметр фотокатода может

превышать 250 мм, но наиболее широко применяются ФЭУ с диаметрами рабочей

площади от 5 до 50 мм.

Сфокусированные световые пучки можно регистрировать и с фотокатодом

малой площади, в том числе . работающим .на отражение. (излучение попадает

на фотокатод со стороны вакуума). Входное окно при этом располагается или на

торце, или на боковой стенке колбы.

В этом случае мы имеем МАССИВНЫЙ ФОТОКАТОД, формируемый на

металлической, т.е. хорошо проводящей поверхности. Он имеет существенные

преимущества перед полупрозрачным и по эмиссионным свойствам и, главное, по

электрическим. Дело в том, что материал фотокатода . полупроводник с

невысокой и сильно зависящей от температуры проводимостью. Электрод к

полупрозрачному фотокатоду может быть подведен только по периферии, так

что при больших интенсивностях света и соответственно больших токах эмиссии

проводимость вдоль тонкой пленки от периферии к центру может оказаться

недостаточной, особенно если фотокатод придется охлаждать для уменьшения

темнового тока. В массивном фотокатоде ток от металлического электрода к

поверхности течет не вдоль, а поперек слоя и ограничений по величине фототока

практически не возникает.

Катодная камера

Катодная камера ФЭУ образуется поверхностями фотокатода и первого

динода, а также расположенными между ними электродами, форма и

распределение потенциалов на которых определяют ее электронно-оптические

свойства. У неё две функции: вытягивание электронов с фотокатода и

фокусировка их на первый динод. Отсюда и характеристические параметры.

Характеристики ФЭУ

Спектральная характеристика

Спектральная область чувствительности ФЭУ ограничивается с

длинноволновой стороны порогом чувствительности фотокатода, а с

коротковолновой . границей пропускания оптического окна. Наиболее часто в

ФЭУ используются следующие окна:

Материал Область пропускания

Стекло λ>320 нм

Увиолевое стекло

(без примесей Fe)

λ>180.200 нм

Кварцевое стекло λ>150 нм

Фтористый магний,

MgF2

λ>110 нм

Во всей видимой области спектра (400.700 нм) можно работать и со

стеклянным окном. Увиолевое позволяет охватить всю область ближнего

ультрафиолета, до так называемой вакуумной ультрафиолетовой (ВУФ) области1.

ФЭУ с кварцевыми окнами имеют смысл и при работе не в вакуумном УФ, так

как кварц более прозрачен, чем увиоль. Окна из MgF2 незаменимы в ВУФ. Этот

материал имеет практически рекордную область прозрачности (уступает только

LiF . 105 нм), но имеет хорошие механические свойства, спаивается со стеклом,

негигроскопичен. У чистого MgF2 довольно резкая граница пропускания.

Практически рабочая область простирается с ним до h ν = 11 эВ (112 нм). Дальше

просто нет прозрачных веществ, но при таких энергиях фотонов фотоэмиссия

идет довольно эффективно почти из всех материалов, так что в более

коротковолновой области можно использовать .открытые. умножители . то же,

что динодные системы ФЭУ, но изготовлены без баллона и помещаются

непосредственно в вакуумную камеру экспериментальной установки. Если

освещать первый динод, то получится ФЭУ с вполне приличными

характеристиками и темновыми токами порядка 1 электрона в секунду (с первого

динода).

Чувствительность фотокатода удобнее всего характеризовать

величиной квантового выхода фотоэмиссии Yк(hω) или квантовой

эффективностью Кλ. Это . безразмерные величины, равные отношению числа

эмиттированых электронов к числу поглощенных (или упавших) квантов света.

Yк(hω) или Кλ далеко не постоянны в рабочей области. Они отличны от нуля

только при hω ≥ hω0 = Iph, называемой порогом, или красной границей

фотоэффекта, или фотоэлектрической работой выхода. При продвижении в

коротковолновую сторону Yк(hω) быстро растет, пропорционально exp[Const ⋅(hω

– hω0)]. Величина Const зависит от типа материала и конструкции фотокатода.

Обычно фотокатоды . сложные двух- или многослойные системы, в которых

1 Кислород воздуха эффективно поглощает излучение, начиная примерно со 180.190 нм. Более

коротковолновая область требует вакуумирования приборов, отсюда и название.

приняты специальные меры к уменьшению поверхностного потенциального

барьера.

Рис.. Спектральные

характеристики

различных

фотокатодов фирмы

RCA (США):

1. сурьмяно-цезиевого;

2. оксидного;

3. мультищелочного;

4.6. сложных

фотокатодов с

отрицательным

сродством к

электрону.

Kλ. квантовая

эффективность

фотокатода

 

Наилучшими свойствами обладают так называемые фотокатоды с

отрицательным сродством к электрону . полупроводниковые системы, в

которых возбужденный в объеме фотоэлектрон выходит в вакуум без

дополнительного потенциального барьера. В них Yк(hω) быстро достигает

максимального значения, иногда более 0,5, и остается примерно постоянным в

относительно широкой области. Спектральная характеристика ФЭУ с такими

катодами может быть близка к П-образной. .  В общем же случае

можно ожидать самых разных форм спектральной зависимости чувствительности,

в том числе и с выраженной структурой, как у оксидного фотокатода .

Для технических целей часто используется такая характеристика ФЭУ, как

спектральная чувствительность фотокатода. почти то же, что квантовый

выход, но отнесена к энергии падающего излучения, а не к числу квантов, и

приводится в единицах А/Вт. Например, для ФЭУ-130 (SbCsK-фотокатод,

спектральная область 200.650 нм, максимум чувствительности . 400…420 нм)

паспортная спектральная чувствительность на длине волны 410 нм (hω = 3.024

эВ) равна 0,03 А/Вт, т.е. квантовый выход фотоэмиссии Yк(3 эВ) = 0.091.

Традиционно приводится и светотехническая характеристика .

чувствительность фотокатода (интегральная, не спектральная), измеряемая в

единицах А/лм.

На рис. 2.7.8 приведены спектральные характеристики ряда ФЭУ

американской фирмы RCA, имеющих стеклянные или увиолевые окна.

Большинство отечественных ФЭУ имеют характеристики типа 1.3.

Все фотокатоды по спектральной характеристике грубо можно разделить на

три группы:

. инфракрасные (оксидный катод, порог . 1,2 мкм);

. УФ-видимые (сурьмяно-цезиевый и мультищелочные катоды с порогом

650.850 нм);

. .солнечно-слепые. или просто .слепые., нечувствительные к видимому

или даже ближнему УФ-излучению. Обычно их фотокатоды . металлы или

простые двойные соединения. Например, полупрозрачный CsJ-фотокатод на окне

из MgF2 чувствителен в области 112.210 нм (11.0.5.9 эВ), причем на 210 нм

его чувствительность составляет всего 1% от максимальной (ФЭУ-154).

В заключение отметим, что для каждого эксперимента нужно специально

подбирать ФЭУ. Спектральная характеристика не должна простираться далеко в

длинноволновую область, иначе будут чрезмерны термоэмиссионные темновые

токи с фотокатода, пропорциональные exp(–ФT/kT). По этой причине ФЭУ с

оксидным катодом применяют только в специальных случаях, когда необходима

длинноволновая граница чувствительности. Если нужно работать только в

ультрафиолете, предпочтение отдают сурьмяно-цезиевым или солнечно-слепым

фотокатодам.

Область приминения

Область приминения

 

В цифровых камерах используются два типа матричных фотоприемников: приборы с зарядовой связью (ПЗС) и фоточувствительные сенсоры на основе КМОП-структур. (Трехслойные сенсоры Foveon пока не получили широкого распространения.) Они состоят из набора отдельных чувствительных к свету элементов. Под действием света на каждой ячейке сенсора накапливается (формируется) электрический заряд, который потом преобразуют в напряжение и считывают с фотоприемника.

  Так же используются в цифровых видеокамерах. Важным направлением совершенствования систем наведения ВТО является внедрение многоэлементных матричных приемников излучения, что позволяет не просто обнаруживать объект (цель), но и, получив его образ, распознать цель.

 

 

МИНИСТЕРСТВО ОБРАЗОВАНИЯ                      РЕСПУБЛИКИ МОЛДОВА

Технический Университет Молдовы

 

Факультет Радиоэлектроники

 

Кафедра Телекоммуникаций

Курсовая работа

На тему:

 

 

Матричные фотоприемники

 

Выполнил                                                          Борденюк В.М                                                                                 

 студент                                                                                                                                                                                                                                                                                                                                                                       Гр. TLC-023                                                  

Проверил

Дата: 2019-12-10, просмотров: 300.