Интернет - протокол . IP - адресация
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Интернет-протокол является основополагающим протоколом всего TCP/IP. Реализуя механизмы прохождения информации по различным сетям, он выполняет следующие основные функции:

• определение базового блока передачи данных — дейтаграм­мы, ее формата и значений полей в заголовках;

• фрагментацию дейтаграммы и ее обратного восстановления;

• надежную доставку дейтаграммы получателю;

• обеспечение логической адресации устройств в сети;
I • поддержку маршрутизации.

Любая дейтаграмма состоит из заголовка и поля данных, сле­дующего сразу за заголовком. Пример структуры полей заголовка приведен в табл.14.1.

       
Номер версии (4 бит) Длина заголовка (4 бит) Тип услуги (8 бит) Общая длина заголовка (16 бит)
Идентификатор (16 бит) Флаги (3 бит)

Смещение фрагмента (13 бит)

Время жизни (8 бит) Протокол (8 бит)

Контрольная сумма заголовка (16 бит)

Адрес отправителя (32 бит)

Адрес получателя (32 бит)

Опции (переменная длина)

Выравнивание числа бит до 32

 

Фрагментация большой дейтаграммы заключается в разделе­нии ее на несколько частей. В большинстве сетей определен мак­симальный размер передаваемого блока (MTU — Maximum Trans­mission Unit), например в сети Ethernet он составляет 1 500 байт, а в сети FDDI - 4096 байт.

На рис. 14.4 представлена процедура фрагментации и восста­новления дейтаграммы.

Пусть, например, отправителю необходимо передать сообще­ние длиной 5 700 байт из сети, в которой ограничение на макси­мальный размер кадра составляет 4096 байт, в сеть, где анало­гичное значение — 1 500 байт. При поступлении блока на сетевой уровень Интернет-протокол делит его на две равные дейтаграм­мы, установив в первой из них отличный от нуля флаг фрагмен­тации. Значение флага фрагментации во второй дейтаграмме рав­но нулю, что указывает на то, что это последний фрагмент сооб­щения. Размер каждой дейтаграммы составляет 2 850 байт плюс заголовок 20 байт (при отсутствии опций), что укладывается в кадр сетевого уровня.

Дейтаграммы поступают в маршрутизатор, который определя­ет, что их необходимо передать в сеть, в которой ограничение на максимальный размер кадра составляет 1 500 байт. Для этого из каждой дейтаграммы извлекаются фрагменты сообщения, делят­ся пополам, и формируются новые дейтаграммы, каждая из кото­рых имеет размер (1425 + 20) байт, что меньше ограничения на максимальный размер кадра принимающей сети. При этом по пути маршрутизации фрагменты дейтаграмм не укрупняются, даже если текущая сеть допускает такое укрупнение. Восстановление исход ного сообщения производится в месте назначения путем выпол­нения последовательности обратных операций.

В сетях, построенных на базе TCP/IP, оконечные устройства (мобильный терминал, персональный компьютер, коммуникаци­онный сервер и др.) имеют уникальные адреса, позволяющие идентифицировать эти устройства в сетевом пространстве. Адре­сация осуществляется с использованием трех уровней:

физического адреса узла, определяемого технологией, по ко­торой построена сеть. Формат физического адреса предполагает 6 байт; при этом старшие 3 байт определяют фирму-производите­ля, а младшие 3 байт уникальны и назначаются производителем в качестве идентификатора конкретного устройства;

IP -адреса, используемого на сетевом уровне модели ВОС и состоящего из четырех байт. IP-адрес назначается независимо от физического адреса, и именно он является определяющим при рассмотрении процессов межсетевого взаимодействия;

символьного адреса, назначаемого сетевым администратором и предназначенного для удобства запоминания и обращения.

На самом деле IP-адрес состоит из двух четырехбайтовых ча­стей: собственно адреса и маски сети, которая несет информацию о том, какая часть адреса принадлежит главной сети, а какая — подсети. Если терминалы принадлежат одной и той же подсети, то они могут устанавливать между собой прямое соединение по Интернет-протоколу, если же они принадлежат различным под­сетям, необходима маршрутизация.

В приведенном на рис. 14.5 примере наложение маски 255.255.255.0 выделяет подсеть 195.209.0.0, которую можно обо­значить как 195.209.0.0/16, где 16 — число старших разрядов, вы­деляющих подсеть.

Адреса бывают статическими и динамическими. Статический адрес постоянно закреплен за абонентом (либо устройством, на­пример компьютером), и всякий раз при подключении к сети обмен пакетами производится по этому адресу. Динамический же [адрес назначается абоненту на время сеанса, по окончании которого он может быть передан другому абоненту. Обычно статиче­ская адресация используется в локальных сетях, а при работе в сети Интернет абонентам назначаются динамические адреса.

Адресация в локальной сети (в частности, в сети GPRS) свя­зана с понятием порта. Применительно к компьютеру номер пор-

 

 

та определяет точку физического доступа в него. В сети Интернет портом также называется любое приложение, размещенное в узле что позволяет адресовать запросы к определенным файловым струк-турам, а также к аппаратным средствам, объединенным в группу единым адресом. Например, группе абонентов GPRS одного опе­ратора со стороны сети Интернет может быть присвоен один ад. рее, но на уровне протокола пользовательских дейтаграмм (см. далее) каждый абонент будет иметь свой уникальный номер пор­та. Всего возможно 216 портов с номерами от 0 до 65 535. Адрес с указанием порта записывается в виде <адрес>:<порт>, например 195.209.231.196:33. Локальная адресация внутри сети GPRS при­нята не только для более эффективного использования адресного поля, но также для ее зашиты от несанкционированного доступа.



Протокол разрешения адресов

Поскольку IP-адрес назначается независимо от физического адреса, необходимо определить соответствие между этими адре­сами. Процесс определения их соответствия называется разреше­нием адресов, и решение этой задачи возложено на протокол раз­решения адресов (ARP — Address Resolution Protocol).

Функционально протокол разрешения адресов состоит из двух частей, одна из которых определяет физические адреса при по­сылке дейтаграммы, а другая — отвечает на запросы от других устройств в сети. Для уменьшения количества посылаемых запро­сов каждое устройство, использующее данный протокол, имеет


память, называемую таблицей разрешения адресов, где хранятся сведения о соответствующих парах физических и IP-адресов.

Рассмотрим пример разрешения адресов двумя рабочими стан­циями А и В в локальной сети (рис. 14.6):

1 — станция А, которой необходимо передать информацию стан­ки В, с помощью проверки IP-адреса и маски подсети опреде­ляет, что станция В находится в той же локальной сети;

2 — станция А проверяет свою таблицу разрешения адресов и, не находя в ней физического адреса станции В, посылает широ­ковещательный ARP-запрос, содержащий IP-адреса обеих стан­ций;

3 — станция В, получив запрос, сравнивает полученный адрес со своим собственным. Если адреса не совпадают, то запрос игно­рируется;

4 — при совпадении адресов станция В посылает ответ станции А, в котором содержится физический адрес станции В, после чего обе станции обновляют свои таблицы разрешения адресов.

Каждая запись в таблице разрешения адресов имеет опреде­ленное время жизни (обычно 10 мин), и если с момента ее появ­ления она не использовалось больше, чем заданный временной интервал, например 2 мин, то происходит ее удаление.


Дата: 2019-12-22, просмотров: 240.