Цемент, гипс: область применения, свойства.
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Цементы были первыми связующими, примененными в 30-е годы для изготовления форм, отверждаемых на воздухе, т. е. для получения холоднотвердеющих смесей (ХТС). Цемент получают путем обжига при 1300–1450°С до спекания измельченных смесей природных пород известняка и глины или других минералов. Размолотый продукт обжига (клинкер) с небольшим количеством гипса и других добавок называют портландцементом. В настоящее время для приготовления ХТС, а также для изготовления моделей применяется цемент марок 400 и 500. Упрочнение форм основано на гидратации при взаимодействии с водой минералов цемента с образованием кристаллогидратов, которые, срастаясь, создают связи (каркас) между песчинками формовочной смеси. Реакция основной составляющей цемента (алита) с водой следующая: 2(3СаО ⋅ SiO2) + 6H2O → 3CaO ⋅ 2SiO2 ⋅ 3H2O + 3Ca(OH)2. На первой стадии происходит растворение и гидратация компонентов цемента. Образующиеся гидраты выпадают из пересыщенного раствора в виде кристаллов, и процесс их срастания (полимеризации) продолжается до тех пор, пока все связующее затвердеет. Поскольку растворение и гидратация идут медленно, добавляют ускорители твердения. Цементы по сравнению с жидким стеклом позволяют обеспечить лучшую выбиваемость смесей из отливок, так как при нагреве от отливки они дегидратируются и смеси разупрочняются. Для приготовления ХТС необходимо вводить 10–12% цемента и примерно такое же количество воды. Оптимальное водоцементное отношение в формовочной смеси – 0,7–0,8. однако процесс твердения цементов происходит медленно, иногда 2–3 суток. Прочность через 4 ч составляет 0,1–0,15 МПа. Поэтому ХТС с цементом применяют при изготовлении крупных отливок в единичном производстве. Более быстро твердеют глиноземистые цементы марок 400 и 500, содержащие трехкальциевый алюминат, пятикальциевый трехалюминат 5СаО⋅3Al2О3, однокальциевый алюминат СаО⋅Al2О3 и одно-кальциевый двухалюминат СаО⋅2Al2O3.

Недостатком цементов, как связующих, является снижение активности при длительном хранении вследствие образования гидратных оболочек на их частицах. Например, при применении цемента марки 400 после хранения его 5 мес. длительность твердения смеси увеличивается втрое. Активность верхнего слоя складируемого цемента снижается в несколько раз уже через 15 сут. Поэтому цемент надо хранить в сухом помещении в герметизированной таре.

Твердение ХТС ускоряется при совместном вводе глиноземистого цемента (50–60%) и портландцемента (40–50%) в результате химического взаимодействия между отдельными минералами цементов. Более существенное ускорение и повышение прочности достигается при добавке СаСl2, FeCl3, FeSO4 и совместно карбонатов и алюминатов щелочных металлов.

Для точного литья цветных металлов в формовочных смесях вка­честве связующего применяют высокопрочный гипс. При гидротермальной обработке гипсового камня насыщенным водяным паром в закрытых аппа­ратах (автоклавах) образуется альфа-полугидрат (высокопрочный гипс), а в от крытых сосудах - бетта-полугидрат (строительный гипс). При смешивании по­рошкообразного гипса с водой образуется дигидрат CaSO4H2O - твердое камневидное вещество. Химическая реакция разложения гипса (двуводного сульфата кальция) теоретически протекает при температуре 107 °С.

В интервале температур 170 - 200 °С происходит дальнейшая потеря гипсом кристаллизационной воды, образуется так называемый растворимый ангидрит CaSO4, активно соединяющийся с водой. При температуре 200 -400 °С происходит почти полное удаление из гипса кристаллизационной воды. Образуется смесь нерастворимого и растворимого ангидрита. При температуре выше 450 °С гипс переходит в намертво обожженный гипс -ангидрит CaSO4. При температурах 750 - 800 °С образуется эстрих-гипс.

После смешивания порошкообразного гипса с водой и образования камневидного тела прочность гипса достигает максимума при высушивании его до постоянной массы. Замедление схватывания гипса может быть до­стигнуто введением гашеной извести в количестве I - 2%, а также борной кислоты 1,0 - 1,5 % и других соединений.

14. Основные типы и свойства синтетических смол, рекомендации по их применению.

Синтетические смолы относятся к органическим неводным (А-1) и водным (Б-1) связующим. В последнее время в литейном производстве в качестве связующих распространение получают синтетические смолы. Поскольку синтетические смолы являются дорогостоящими, их применяют более экономно, чем другие связующие (в основном для изготовления стержней в горячей и в холодной оснастке и для изготовления оболочковых форм).

Рассмотрим синтетические смолы, применяемые для изготовления

стержней в холодной оснастке.

ХТС с синтетическими смолами начали применять с 1958 года. Вместо традиционной технологии изготовления стержней, при которой стержни после уплотнения подвергались тепловой сушке, использование ХТС позволило коренным образом изменить технологию изготовления стержней и форм. Сущность технологии заключается в следующем: в смесь вводится жидкая смола (в полимерном состоянии) и отвердитель (кислота), при химическом взаимодействии которых происходит поликонденсация смолы до полного ее затвердевания и, как результат, упрочнения стержня (формы). Применяются также способы упрочнения стержней из ХТС со смолой путем добавки в смесь изоцианатов (отвердителей) и с продувкой ее катализатором (аминами, SO2).

ХТС со смолами имеют бόльшие преимущества, чем смеси с другими связующими: высокая прочность при малом (1–2%) расходе связующего, повышенная точность размеров стержней (и, соответственно, отливок); отпадает необходимость в тепловой сушке, не требуется применение сушильных плит, возможно использование оснастки из любых материалов (металлов, древесины, пластмасс), конструкция стержневых ящиков проще, чем нагреваемых, и т. д. Смеси со

смолами имеют высокую текучесть и за счет этого легко уплотняются даже кратковременной вибрацией. Стержни негигроскопичны, из-за высокой прочности уменьшается или полностью отпадает необходимость в применении каркасов, имеют хорошую податливаемость и выбиваемость. Применение ХТС позволяет механизировать и автоматизировать изготовление стержней, повышает производительность труда и чистоту поверхности отливок, снижает брак и себестоимость

отливок. Известно, что смолы – это олигомеры, застабилизированные на какой-то промежуточной стадии полимеризации или поликонденсации (в зависимости от способа получения). Полимеризационные смолы получают в результате полимеризации одного или нескольких исходных веществ – манометров – по схеме nA An. В литейном производстве применяют в основном конденсационные смолы. Их получают в результате поликонденсации не менее чем двух веществ.

Самыми дешевыми являются мочевино-формальдегидные смолы. Они являются продуктами конденсации мочевины (карбамида) CO(NH2)2 с формальдегидом CH2O, производятся различных марок, отличающихся одна от другой содержанием сухого вещества, степенью конденсации, вязкостью, содержанием свободного формальдегида и др. Недостатком карбамидных смол является низкая термостойкость (220–480°С), вследствие чего стержни и формы имеют большую газотворность, а при разложении они выделяют азот, что может стать причиной газовой пористости в отливках. Эти смолы применяются в основном для получения отливок из цветных металлов и тонкостенного чугунного литья. Содержание азота в смеси для получения чугунных и стальных отливок не должно превышать 0,2%, а для получения отливок из высоколегированных чугунов и сталей –0,01%. Поэтому для стального литья можно применять мочевино-формальдегидно-фурановые смолы, содержащие не более 1,5% азота. Кроме того, смеси с мочевино-формальдегидными смолами имеют

повышенную гигроскопичность. С целью повышения термостойкости мочевино-формальдегидных смол при их синтезе вводят фуриловый спирт С5H6O2. Такие смолы называют карбамидо-фурановыми. Чем больше введено в смолу фурилового спирта, тем выше их термостойкость. Установлено, что для чугунного литья необходимо содержание в смоле не менее 30%, а для стального – не менее 60% фурилового спирта. Из фуриловых смол наибольшее распространение получили мочевино-формальдегидные смолы, содержащие 40–90% фурилового спирта. Термин “фурановая смола” относится к фенолоформальдегидным смолам, модифицированным фуриловым спиртом. Повышенную термостойкость (400–800°С) имеют и фенолофор-мальдегидные смолы, являющиеся продуктами поликонденсации фенола С6Н5ОН и формальдегида в присутствии различных катализаторов и добавок. Поэтому эти смолы пригодны для стального и чугунного литья. Высокую термостойкость имеют также фурило-фенолоформальдегидные смолы – продукты поликонденсации фурилового спирта с фенолоспиртами, стабилизированные фуриловым спиртом (ФФ-1Ф, ФФ-1ФМ) или гидролизным этиловым спиртом (ФФ-1СМ). Эти смолы применяют для ответственного стального литья. Фурило-фенолоформальдегидные смолы – самые дорогостоящие. Весьма перспективны водорастворимые фенолоформальдегидные смолы СФЖ-30-13 и водоэмульсионная смола СФЖ-301, позволяющие вводить в смесь до 3% глины или применять глинистые пески. Глина при этом адсорбирует низкомолекулярные фракции связующего, в результате чего повышается прочность XТC. Применяются и другие виды смол для ХТС: алкидные, эпоксидные, полиэфирные.

Алкидные, или глифталевые, смолы получают при поликонденсации глицерина и фталевого ангидрида. Их отверждают полиизоцианатом и амином. При этом образуются полиуретаны, имеющие высокую прочность. Известны также алкидные смолы, модифицированные растительным маслом. Полиэфирные смолы имеют в молекулах несколько групп ОН. В качестве отвердителя этих смол в ХТС вводятся изоцианаты. Смолы отверждают также продувкой аминами. Через 5 мин прочность достигает 0,2 МПа при содержании 0,7% смолы. В результате исследований было показано, что при содержании 0,7% смолы “Систол” и 0,9% изоцианата добавками 0,03–0,07% уротропина и 0,3% воды можно достичь прочности при сжатии 2,5–3,5 МПа. Известны ХТС с поливиниловым спиртом ( ГОСТ 10779–78), который вводится в смесь в виде 7,5–10%-го водного раствора в количестве 4–5% (по отношению к песку). Отверждение происходит при добавке 0,06–0,18% дикарбоновых кислот, например, лимонной. При этом достигается прочность 1,9–2 МПа. Однако ХТС с поливиниловым спиртом (ПВС) имеют повышенную гигроскопичность, и для ее снижения необходимо в смесь добавлять 0,1–0,5% (от сухого ПВС) силана. Смолы холодного отверждения при хранении самопроизвольно полимеризуются. Чем выше степень их полимеризации сверх оптимальной, тем ниже прочность ХТС с такими смолами. Поэтому срок хранения смол ограничивается (2–6 мес.). Кроме того, для минимального расхода смолы необходимо применять песок высокого качества с минимальным содержанием глины и других примесей, которые поглощают часть смолы и снижают адгезию связующего к песчинкам. В последние годы применяется способ отверждения ХТС со смолами продувкой сухим холодным или горячим воздухом. Все смолы, применяемые для ХТС, пригодны для изготовления стержней в нагретой оснастке. Для изготовления оболочковых форм по нагретым моделям (250–350°С) выпускается специальное связующее ПК-104, представляющее собой тонкоизмельченную смесь новолачно-формальдегидной смолы марки 104 и 8% уротропина – гексаметилентетрамина (СН2)6N4. При конденсации фенола и формальдегида в щелочной среде (pH>7) образуются резольные смолы, а при избытке фенола в кислой среде (pH<7) образуются новолачные смолы. Для ускорения процесса отверждения новолачных смол в них добавляют технический уротропин, в результате чего новолачные смолы приобретают свойства резольной смолы – быстро твердеют после расплавления, превращаясь в результате поликонденсации в более высокомолекулярные неплавкие и нерастворимые соединения. Такие смолы, которые при нагреве размягчаются, а при охлаждении вновь затвердевают, называют термореактивными (в отличие от термопластичных смол). Уротропин при нагреве (при отверждении) разлагается на формальдегид, аммиак и другие газообразные продукты. Выделяющийся формальдегид “сшивает” цепи молекул новолака, образуя трехмерную сетчатую структуру, и придает смоле и оболочке необходимую прочность.

В последние годы для изготовления стержней в нагретой оснастке в качестве связующего применяется поливиниловый спирт (ПВС), (ГОСТ 10778–83). Марки ПВС обозначаются дробью: в числителе дано среднее значение динамической вязкости 4%-го раствора, а в знаменателе – среднее содержание ацетатных групп (по высшему сорту). ПВС представляет собой продукт щелочного омыления поли-винилацетата. Он вводится в смесь в виде 7,5–10%-го водного раствора (0,375–0,5% в пересчете на сухое вещество). При таком малом расходе ПВС позволяет получить высокую прочность стержней. Недостатком ПВС, как и карбамидных смол, является малая термостойкость. Прочность стержней, отвержденных в нагретой оснастке, значительно выше (при разрыве 1,5–10 МПа), чем из ХТС, так как процесс поликонденсации смолы протекает более полно, а продукты поликонденсации смол удаляются из пленок, в результате чего образуется более прочная трехмерная структура. Поскольку при отверждении смол и при их термодеструкции (нагрев в форме металлом) выделяются вредные вещества – формальдегид, фенол, метанол, необходимо вводить в смесь их минимальное количество, иметь надежно работающую вентиляцию, а процесс изготовления стержней полностью

автоматизировать. Вместо феноло-формальдегидных смол предлагаются резорцино-формальдегидные, поскольку резорцин менее летуч, чем фенол. К водорастворимым органическим связующим относятся: упаренная кислая вода газогенераторных станций, работающих на древесном угле, КВ (необессмоленная), КВС (необесфенольная растворимая смола), оксизан – упаренный концентрат после экстракции древесной смолы при термическом разложении древесины. Эти связующие по прочности получаемых стержней уступают синтетическим смолам. Их применяют для изготовления стержней 3-го и 4-го классов сложности, упрочняемых тепловой сушкой. Прочность стержней при содержании 3% такого связующего после сушки при 160–180°С не менее 0,7 МПа..

15. Жидкое стекло: получение, свойства, рекомендации по применению, методы отверждения.

Также см. вопрос 10.

Ж.с. стоит на 2 месте по распространению из всех неорг. связующих Ж.с. - это этил-силикат-глина. Предст-т соед-е кварца с солями щелочных металлов (сода или сульфат Na с углем). Ж.с. поступает к потребителям в виде твердых, прозрачных, слегка окрашенных кусков. Главной хар-кой ж.с. явл. соотношение числа грамм-молекул a SiO2 к числу грамм-молекул, например в NaO. Сущ-т формула. М=( SiO2.% /NaO.%) 1,032. М-модуль ж.с. Чем > М, тем быстрее затвердевает смесь. Поэтому М уст-т в зав-ти от назнач смеси. Выпускают ж.с.. 3-х модулей: М-2-2,3; М-2.3-2.6, М-2,6-3,0. М также влияет на прочность смеси соот-но с увелич. М умен-ся прочность смеси во влажном сост. и соот-но наоборот, уменьш-ся прочность в сухом сост. М можно искусственно понижать путем добавки к же р-ра едкого Na, с плотностью близкой к ж.с. (1.3- I.Sr/см1). Связывание песчинок при наличии ж.с.- в смеси происх-т выделение и гидратация глинозема, кот-н растворяется в остатке ж.с На зернах песка образ-ся тв. или полутвердые оболочки, которые связывают зерна между собой. Весь этот процесс протекает в 3 стадии: 1.разложение силиката Na - протекает интенсивнее в присутствии углекислого газа. Обяз. условием отверждения явл. образ-с монокремниевой кислоты, SiOH и ее последующая конденсация в силикогеле При CO2-процессе оно означается при рН=10,5. 2. происходит образ-с геля кремниевой кислоты. 3.частичное удаление влаги, входящей в состав геля кремниевой к- ты. Носителем прочности явл-ся силикогель. Скорость образ-* геля зависит от концентрации в окисях кремния, от t, от кислотности, от типа кислоты инициатора. Чем > концентрация SiO2a тем > прочность. Наиб. тв. и прочные гели получ. при низком М. При высушивании или естеств. обезвоживании обр-ся 3-х мерная сетка; идет упрочнение связей между частицами; усадка сетки по мере испарения воды; развитие напряжений в сетке в процессе усадки, появление трещин в высушенном виде. На практике чаше всего применяют продувку стержней углекислым газом в стержн. ящиках С последующей кратковрем подсушкой при Т в ннт-ле 250-300*С или подпиливание формы в течение суток. Процесс продувки стержней на основе ж.с. наз-т CO2-процессом.

Жидкостекольные смеси пластичные («ПСС-процесс») и жидкие отверждают также различными твердыми отвердителями, вводимыми в смесь в порошкообразном виде. Такие смеси называют самотвердеющие. В качестве отвердителей используют саморассыпающийся шлак феррохромового производства (феррохромовый шлак), портландцемент, нефелиновый шлам, синтетический двухкальциевый силикат 2CaO*Si02, кремнефторид натрия Na2SiF6, ферросилиций, карбид кальция, кремний, полуводный гипс CaS04-*0,5H2O, антипирен из нефелина, полифосфаты,и др.

В последнее время для отверждения жидкостекольных смесей начали применять в качестве отвердителей сложные органические эфиры (СОЭ), использование которьтх во многом решает пробле му выбиваемости и регенерируемости смесей с жидким стеклом. В отличие от С02-процесса, в котором отверждение развивается последовательно от слоя к слою, при использовании СОЭ отверждение происходит одновременно во всем объеме смеси в равной степени, что, вероятно, является причиной более высоких прочностных свойств получаемых смесей. Поэтому для достиже­ния необходимой технологической прочности смеси в случае при­менения СОЭ в качестве отвердителей содержание жидкого стек­ле в смеси может быть значительно уменьшено.

Смеси на жидком стекле могут быть переведены в жидкое (пенообразное) состояние (ЖСС). Принцип получения ЖСС, на переводе в подвижное состояние с помощь пенообразующих поверхностно-активных веществ (ПАВ) и последующем их самозатвердевании за счет использования двухкалциевого силиката или содержащих его материалов — феррохромового шлака, нефелинового шлама и др. Широкий интерес к названному процессу, возникший nocле его внедрения, в настоящее время значительно уменьшился из-за таких недостатков, как низкая точность paзмеров, неудовлетворительное качество отливок, плохая выбиваемость, большой расход свежих песков и др.

Дата: 2016-10-02, просмотров: 215.