Алгоритм цифровой подписи DSA (Digital Signature Algorithm) предложен в 1991 г. в НИСТ США для использования в стандарте цифровой подписи DSS (Digital Signature Standard). Алгоритм DSA является развитием алгоритмов цифровой подписи Эль Гамаля и К.Шнорра.
Отправитель и получатель электронного документа используют при вычислении большие целые числа: G и P – простые числа, L бит каждое (512 £ L £ 1024); q – простое число длиной 160 бит (делитель числа (P –1)). Числа G, P, q являются открытыми и могут быть общими для всех пользователей сети.
Отправитель выбирает случайное целое число X, 1< X< q. Число X является секретным ключом отправителя для формирования электронной цифровой подписи.
Затем отправитель вычисляет значение
Y = GX mod P.
Число Y является открытым ключом для проверки подписи отправителя. Число Y передается всем получателям документов.
Этот алгоритм также предусматривает использование односторонней функции хэширования h(·). В стандарте DSS определен алгоритм безопасного хэширования SHA (Secure Hash Algorithm).
|
m = h(M), 1< m < q,
затем генерирует случайное целое число K, 1< K< q, и вычисляет число r:
r = (GK mod P) mod q.
Затем отправитель вычисляет с помощью секретного ключа X целое число s:
s = mod q.
Пара чисел r и s образует цифровую подпись
S = (r ,s)
под документом M.
Таким образом, подписанное сообщение представляет собой тройку чисел [M, r, s].
Получатель подписанного сообщения [M, r, s] проверяет выполнение условий
0 < r < q, 0 < s < q
и отвергает подпись, если хотя бы одно из этих условий не выполнено.
Затем получатель вычисляет значение
w = mod q,
хэш-значение
m = h(M)
и числа
u1 = (m * w) mod q,
u2 = (r * w) mod q.
Далее получатель с помощью открытого ключа Y вычисляет значение
v = (( ) mod P) mod q
и проверяет выполнение условия
v = r.
Если условие v = r выполняется, тогда подпись
|
Можно строго математически доказать, что последнее равенство будет выполняться тогда, и только тогда, когда подпись S = (r,s) под документом M получена с помощью именно того секретного ключа X, из которого был получен открытый ключ Y. Таким образом, можно надежно удостовериться, что отправитель сообщения владеет именно данным секретным ключом X (не раскрывая при этом значения ключа X) и что отправитель подписал именно данный документ M.
По сравнению с алгоритмом цифровой подписи Эль Гамаля алгоритм DSA имеет следующие основные преимущества:
1. При любом допустимом уровне стойкости, т.е. при любой паре чисел G и P (от 512 до 1024 бит), числа q, X, r, s имеют длину по 160 бит, сокращая длину подписи до 320 бит.
2. Большинство операций с числами K, r, s, X при вычислении подписи производится по модулю числа q длиной 160 бит, что сокращает время вычисления подписи.
3. При проверке подписи большинство операций с числами u1, u2, v, w также производится по модулю числа q длиной 160 бит, что сокращает объем памяти и время вычисления.
Недостатком алгоритма DSA является то, что при подписывании и при проверке подписи приходится выполнять сложные операции деления по модулю q:
s = (mod q), w = (mod q),
что не позволяет получать максимальное быстродействие.
|
Дата: 2016-10-02, просмотров: 207.