Выбросы загрязняющих веществ
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Бытовые и производственные энергопотребности удовлетворяются следующими видами энергии:

- тепловой (технологические процессы, отопление, кондиционирование воздуха),

- электрической (привод машин, электроаппаратуры, освещение),

- электромагнитной (радиосвязь, телефонная связь, телевидение, приборы).

Наиболее универсальная - электрическая энергия, обеспечивающая потребность в электромагнитной и в значительном количестве в тепловой энергии. До настоящего времени большая часть энергопотребления покрывается за счет непосредственного сжигания органического топлива в печах.

Предприятия, вырабатывающие электроэнергию на базе органического топлива, называются тепловыми электростанциями (ТЭС). При сжигании топлива химическая энергия превращается в тепловую энергию пара, которая затем в паровой турбине переходит в механическую энергию, а турбогенератор делает ее уже электрической. Тепловой КПД обычной ТЭС весьма низкий - 37-39%. Почти 2/3 тепловой энергии и остатков бывшего топлива в буквальном смысле вылетают в трубу, нанося вред окружающей среде.

На производство электроэнергии тепловыми электростанциями расходуется менее четверти всех добываемых горючих ископаемых, остальная часть расходуется в основном на получение промышленной и бытовой тепловой энергии. Предприятия, вырабатывающие как электрическую, так и тепловую энергию, называются теплоэлектроцентралями (ТЭЦ). Электрическая энергия ТЭЦ подается в электросеть, а тепловая - в теплопроводы.

При сжигании органического топлива в топках промышленных и коммунальных котлоагрегатах и теплогенераторах производится тепловая энергия (водяной пар или горячая вода на отопление или горячее водоснабжение). Котельные установки, предназначенные для снабжения паром предприятий, принято называть производственными котельными; в случае, когда котельная вырабатывает пар и нагревает воду для предприятия и нужд отопления, ее называют производственно-отопительной; и когда котельная установка сооружается лишь для потребностей отопления и горячего водоснабжения, ее называют отопительной. Представленные котельные могут быть различной мощности: различают котельные с паропроизводительностью до 30 т/ч и выше 30 т/ч.

Тепловые электростанции и теплоэлектроцентрали, вырабатывающие электрическую и тепловую энергию на базе сжигания органических видов топлива, оказывают значительное отрицательное воздействие на окружающую среду. С дымовыми газами электростанций в воздушный бассейн выбрасывается большое число твердых и газообразных загрязнителей, среди которых такие вредные вещества как зола, оксиды углерода, серы и азота. Помимо этого в воздушный бассейн попадает огромное количество диоксида углерода и водяных паров.

Объемы вредных выбросов ТЭС в атмосферу для примера можно характеризовать данными материального баланса угольной ТЭС мощностью 2400 МВт, работающей на угле типа донецкого антрацитового штыба (рис. 1). На такой ТЭС в час сжигается до 1060 т угля (калорийностью порядка 22,7 МДж/кг, зольностью 23 %, сернистостью 1,7 %), из топок котлов удаляется 34,5 т/ч шлака и из бункеров электрофильтров (очищающих дымовые газы от золы на 99 %) - 193,5 т/ч уловленной золы. Уловленная зола и шлак в количестве 228 т/ч попадают в золоотвал электростанции, засоряя и загромождая огромные территории. При этом часовой выброс дымовых газов составляет около 8 млн. м3, содержащих 2350 т углекислого газа, 251 т водяных паров, 34 т сернистого ангидрида, 9,3 т оксидов азота, 2 т летучей золы (при эффективности золоуловителей 99 %).

При сжигании твердого, жидкого и газообразного топлива вся его масса превращается в отходы, причем количество продуктов сгорания в несколько раз превышает массу использованного топлива за счет включения азота и кислорода (в 5 раз - при сжигании газа, в 4 раза - угля).

Существенное влияние на состав образующихся вредных веществ при сжигании топлива оказывает его вид:

1) На тепловых электростанциях используется твердое, жидкое и газообразное топливо.

Твердое топливо

В качестве твердого топлива в теплоэнергетике используют угли (бурые, каменные, антрацитовый штыб), горючие сланцы и торф.

Горючая часть топлива включает органическую, состоящую из углерода, водорода, кислорода, органической серы, и неорганическую части (в состав горючей части топлива ряда месторождений входит пиритная сера FeS2).

Негорючая (минеральная) часть топлива состоит из влаги и золы. Основная часть минеральной составляющей топлива переходит в процессе сжигания в

летучую золу, уносимую дымовыми газами. Другая часть в зависимости от конструкции топки и физических особенностей минеральной составляющей

топлива может превращаться в шлак.

Зольность отечественных углей колеблется в широких пределах (10—55 %).

Соответственно изменяется и запыленность дымовых газов, достигая для

высокозольных углей 60—70 г/м3.

Химический состав золы твердого топлива достаточно разнообразен.

Обычно зола состоит из оксидов кремния, алюминия, титана, калия, натрия,

железа, кальция, магния. Кальций в золе может присутствовать в виде свободного оксида, а также в составе силикатов, сульфатов и других соединений.

Более детальные анализы минеральной части твердых топлив показывают, что в золе в небольших количествах могут быть и другие элементы, например, германий, бор, мышьяк, ванадий, марганец, цинк,

уран, серебро, ртуть, фтор, хлор. Микропримеси перечисленных элементов

распределяются в различных по размерам частиц фракциях летучей золы неравномерно, и обычно их содержание увеличивается с уменьшением размеров этих частиц.

В составе золы твердых видов топлива могут присутствовать радиоактивные изотопы калия, урана и бария. Эти выбросы практически не

влияют на радиационную обстановку в районе ТЭС, хотя их общее количество может превышать выбросы радиоактивных аэрозолей на АЭС той

же мощности.

Твердое топливо может содержать серу в следующих формах: колчедана Fe2S и пирита FeS2, в составе молекул органической части топлива и в виде сульфатов в минеральной части. Соединения серы в результате горения превращаются в оксиды серы, причем около 99 % составляет сернистый ангидрид S02.

Сернистость углей в зависимости от месторождения составляет 0,3—

6,0 %. Сернистость горючих сланцев достигает 1,4—1,7 %, торфа—0,1 %.

Жидкое топливо

В качестве жидкого топлива в теплоэнергетике применяются мазут, сланцевое масло, дизельное топливо.

В состав золы мазута входят пентаоксид ванадия (V2О5), а также Ni2O3, А1203, Fe2O3, SiO2, МgО и другие оксиды. Зольность мазута не превышает 0,3 %. При полном его сгорании содержание твердых частиц в дымовых газах составляет около 0,1 г/м3, однако это значение резко возрастает в период очистки поверхностей нагрева котлов от наружных отложений.

В жидком топливе отсутствует пиритная сера (FeS2). Сера в мазуте находится преимущественно в виде органических соединений, элементарной

серы и сероводорода. Ее содержание зависит от сернистости нефти, из которой он получен.

В мазуте, сжигаемом в котельных и на ТЭЦ, содержится много сернистых соединений. После его сгорания образуется диоксид серы, являющийся причиной выпадения так называемых кислотных дождей. Предотвратить вредное воздействие кислоты на здоровье людей, жизнь животных и растительный мир, особенно при сверхнормативной ее концентрации, можно при внедрении эффективных технологических схем по

обессериванию мазутов. При переработке высокосернистой нефти только 5—

15 % серы переходит в дистилляционные продукты; остальная часть серы остается в мазуте, сжигание которого в больших количествах на установках НПЗ и крупных ТЭЦ, расположенных вблизи них, связано с большой концентрацией сернистых соединений в отходящих дымовых газах.

Топочные мазуты в зависимости от содержания в них серы подразделяются на малосернистые – содержание серы Sp < 0,5 %, сернистые

Sp = 0,5-2,0 % и высокосернистые Sp > 2,0 %.

Дизельное топливо по содержанию серы делится на две группы: первая—до 0,2 % и вторая—до 0,5 %. В сланцевом масле содержание серы не

более 1 %.

 

Газообразное топливопредставляет собой наиболее “чистое” органическое топливо, так как при его полном сгорании из токсичных веществ образуются только оксиды азота. При неполном сгорании в выбросах присутствует оксид углерода (СО).

ТЭС на природном газе значительно экологически чище угольных, мазутных и сланцевых, но нельзя забывать о вреде, который наносит природе добыча газа и прокладка тысячекилометровых трубопроводов, особенно в северных районах страны, где сосредоточены месторождения газа (ущерб тайге, тундре, оленеводству).

В составе загрязняющих веществ, характерных для объектов газовой

промышленности, обычно выделяют сероводород H2S. Природные газы могут быть бессернистыми или содержать значительные количества сероводорода. Добыча и переработка сероводородсодержащих газов, токсичность и летучесть компонентов которых выше, чем у нефти,

сопровождается выделением больших количеств H2S в атмосферу и является более опасной по загрязнению воздуха и других экологических объектов по сравнению с природным газом, свободным от сероводорода. В процессе переработки газов, содержащих Н2S, происходит разрушение и износ оборудования, в результате чего выделяются в окружающую среду в опасных

объемах сероводород и сопутствующие ему токсичные сернистые, азотные и

другие соединения.

Требования к степени очистки зависят от назначения газа. При очистке газа, выбрасываемого в атмосферу, содержание сероводорода должно соответствовать ПДК. При очистке технологических газов содержание сероводорода регламентируется требованиями процессов дальнейшей переработки. Сероводород, выделяемый при очистке, перерабатывают в элементарную серу или серную кислоту. Методы очистки

от сероводорода можно разделить на две основные группы: сорбционные методы и методы каталитического окисления. Наибольшее распространение получил метод хемосорбции, обеспечивающий степень очистки до 99,9%.

2) При сжигании органического топлива различают 4 режима горения:

- нейтральное (стехиометрическое или полное сгорание топлива при коэффициенте избытка воздуха α=1),

- окислительное (полное сгорание при небольшом избытке воздуха α>1),

- восстановительное (неполное сгорание при недостатке воздуха α<1),

- смешанное (окислительно-восстановительное, характерное для горения твердого топлива при неравномерном взаимодействии поверхностей его частиц с воздухом, когда α>1).

Перечисленные факторы влияют на выброс всех вредных веществ, содержащихся в дымовых газах - золы, оксидов азота, углерода, серы, оксидов ванадия (в основном выделяется пентаоксид ванадия V2О5).

 

 

Охрана атмосферного воздуха

Загрязнение воздушного бассейна объектами теплоэлектроэнергетики связано в основном с выбросами дымовых газов, образующихся при сжигании органического топлива в котлах электростанций. В связи с этим для снижения вредного воздействия энергетики на воздушный бассейн может быть использовано как минимум три пути:

1) уменьшение количества и улучшение качества органического топлива, сжигаемого для производства электроэнергии и теплоты;

2) подавление образования и улавливание вредных компонентов дымовых газов и сокращение благодаря этому выброса электростанциями вредных веществ в атмосферу;

3) уменьшение концентрации вредных веществ в приземном слое атмосферы в результате рассеивания вредных выбросов высокими трубами электростанций, более рационального их размещения, усиления контроля за выбросами и экологическое управление режимами энергетических предприятий с использованием экологически чистых топлив.

Дата: 2016-10-02, просмотров: 198.