Обзор и анализ сетевого оборудования и операционных систем
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Кафедра СиУТ

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К дипломному проекту

на тему:

«Проектирование локальной сети для рабочих мест на базе сети Ethernet»

Минск 2005

 



Содержание

 

1. Концепция построения, назначение и типы сетей

1.1 Архитектура локальной сети Ethernet

1.2 Два типа сетей

1.2.1 Одноранговые сети

1.2.2 Сети на основе сервера

1.3 Обзор топологии сетей

1.3.1 Шина

1.3.2 Звезда

1.3.3 Кольцо

1.3.4 Комбинированные топологии

Выводы

Обзор и анализ сетевого оборудования и операционных систем

Обзор сетевых кабелей и компонентов кабельной системы

2.1.1 Витая пара

2.1.2 Коаксиальный кабель

Волоконно-оптический кабель

2.1.4 Обзор кабельных соединений и компоновки Ethernet.

2.2 Анализ и выбор сетевого оборудования

2.2.1 Платы сетевого адаптера

2.2.2 Сетевые серверы

2.2.3 Анализ источников бесперебойного питания

2.2.4 Концентраторы

2.3 Обзор операционных систем

2.3.1 Unix/Linux

2.3.2Windows NT 4

2.3.3 NetWare

Выводы

3. Обоснование выбора аппаратно-программной платформы

3.1 Обоснование выбора среды передачи

3.2 Обоснование выбора сетевого оборудования

3.3 Обоснование выбора операционной системы

Выводы

4. Проектирование ЛВС Ethernet

4.1 Проектирование структурированной кабельной системы

4.1.1 Принцип построения СКС

4.1.2 Анализ кабельной системы

4.1.3 Расчет длины кабеля

4.2 Установка активного оборудования

4.3 Расчет потребляемой мощности источника бесперебойного питания

5. Анализ характеристик ЛВС Ethernet

6. Технико-экономическое обоснование проекта

6.1 Характеристика проекта

6.2 Сетевое планирование при проектировании локальной сети

6.3 Расчёт сметы затрат

7. Охрана труда и экологическая безопасность

7.1 Основные требования к освещению с учётом труда

7.2 Обоснование организации освещения и нормативного уровня освещённости рабочего места

7.3 Средства и способы обеспечения требуемой освещённости и равномерности светораспределения

Расчёт освещения рабочего места

Заключение

Литература

 



Введение

 

В наше время в условиях быстрого развития информационно-вычислительной техники информация выступает как один из важнейших товаров. Успех коммерческой и предпринимательской деятельности связан с банковскими, муниципальными, банковскими информационными системами, работа которых базируется на локальных вычислительных сетях (ЛВС).

Прошедшее десятилетие характеризовалось бурным развитием сетевых систем. Сети предоставляют самый эффективный в ценовом отношении способ использования компьютерной техники - коллективный. Соединив благодаря сравнительно небольшим затратам кабелями имеющиеся серверы, компьютеры, принтеры, модемы, вы получаете возможность сократить простой дорогого оборудования до минимума, сэкономив существенные суммы на его закупке и обслуживании.

В своей первоначальной форме локальные сети (Local Area Network – LAN) представляли собой не что иное, как коаксиальный кабель, соединяющий серверы с настольными терминалами, пользователи которых работали исключительно с текстовой информацией, отображаемой на монохромном мониторе с низкой разрешающей способностью.

В середине 90-х годов сети архитектуры Ethernet и Token Ring достигли пика своего развития. Однако, в отличии от первого поколения локальных сетей, кризис производительности возник отнюдь не из-за недостаточной пропускной способности. В сетях Ethernet, в частности, пропускная способность вообще не является проблемой. Напротив снижение эффективности функционирования было обусловлено другими причинами:

- жёстокой конкуренцией за доступ к локальной сети;

- насыщенностью доступной полосы пропускания не обязательными служебными сообщениями.

Принципиально новые типы программного обеспечения так же внесли свою лепту в раскрытие недостатков существующих сетей. Требования программного обеспечения к производительности сетей отличались от тех параметров, которые были в состоянии предоставить сети.

В настоящее время LANs превратились в локальные сети с пропускной способностью и производительностью, достаточной для традиционных форм обработки данных (например, электронной почты) и даже для таких требовательных к производительности процессора и сети клиент – приложение, как интерактивные голосовые и видеоконференции в реальном масштабе времени.

Сегодня сетевые технологии охватывают все вопросы, касающиеся совместного использования данных, программного обеспечения и компьютерной периферии, включая принтеры, модемы, многофункциональные копировальные и факсовые машины, накопители на компакт-дисках, стримеры, винчестеры и другое оборудование для хранения данных, средства доступа к Internet.

Относительно небольшая сложность и стоимость ЛВС, использующих в основном ПК, обеспечивают широкое применение сетей в автоматизации коммерческой, банковской и другой деятельности.

Всё это делает тему дипломного проекта очень актуальной в наше время.

Целью данного проекта является проектирование локальной сети для рабочих мест офиса на базе протокола Ethernet. Данная сеть должна обеспечивать подключение 48 компьютеров с учётом роста сети до 30% от существующего парка ПК(до 62 компьютеров), взаимодействие с ЛВС Token Ring. Сеть должна обеспечивать обмен между пользователями текстовой, графической информации а так же работу и использование некоторых мультимедийных приложений. Кроме этого сеть должна обеспечивать достаточную степень конфиденциальности и сохранности информации, защиту от несанкционированного доступа.

Локальную сеть необходимо спроектировать в двухэтажном здании с заданным расположением рабочих мест.

Для решения поставленной задачи необходимо было изучить структуру существующих сетей, общие принципы их построения, выбрать необходимое активное оборудование, спроектировать структурированную кабельную систему.

В первом разделе были рассмотрены основные типы сетей, существующие топологии построения сетей, дан краткий обзор ЛВС на базе протокола Ethernet 10BaseT и рассмотрены особенности работы этой сети.

Во втором разделе был дан обзор сетевых кабелей и основных компонент кабельной системы, активного сетевого оборудования не и сетевой операционной системы.

В третьем разделе был сделан выбор среды передачи, активного сетевого оборудования, сетевой операционной системы и дано обоснование данного выбора.

В четвёртом разделе была спроектирована структурированная кабельная система, рассчитана длина кабеля, мощность ИБП.

В пятом разделе произведён анализ характеристик локальной сети на базе протокола Ethernet.

В шестом разделе дано технико-экономическое обоснование проекта, произведено сетевое планирование при проектировании ЛВС Ethernet, приведён расчет сметы затрат.

В седьмом разделе, посвящённом охране труда и экологической безопасности, описываются требования к освещённости рабочих мест, и производится расчёт освещённости рабочего места оператора.

Таким образом в соответствии с поставленными задачами была спроектирована ЛВС Ethernet.



Два типа сетей

 

Все сети имеют некоторые общие компоненты, функции характеристики. В их числе:

- серверы – компьютеры, предоставляющие свои ресурсы сетевым пользователям;

- клиенты – компьютеры, осуществляющие доступ к сетевым ресурсам, предоставляемым серверами;

- среда передачи – способ соединения компьютеров;

- совместно используемые данные – файлы, предоставляемые серверами по сети;

- совместно используемые периферийные устройства, например принтеры, библиотеки CD-ROM и т.д., - ресурсы, предоставляемые серверами;

- ресурсы – файлы, периферийные устройства и другие элементы, используемые в сети.

Несмотря на отмеченное сходство, сети разделяются на два типа:

- одноранговые;

- на основе сервера.

Различия между одноранговыми сетями и сетями на основе сервера принципиальны, поскольку предопределяют разные возможности этих сетей. Выбор типа сети зависит от многих факторов:

- размера предприятия;

- необходимой степени безопасности;

- вида бизнеса;

- доступности административной поддержки;

- объёма сетевого трафика;

- потребностей сетевых пользователей;

- уровня финансирования.

 

Одноранговые сети

В одноранговой сети (рис. 1.2) все компьютеры равноправны: нет иерархии среди компьютеров и нет выделенного сервера. Обычно каждый компьютер функционирует и как клиент, и как сервер; иначе говоря, нет отдельного компьютера, ответственного за всю сеть. Пользователи сами решают, какие данные на своём компьютере сделать доступными по сети.

Одноранговые сети чаще всего объединяют не более 10 компьютеров. Отсюда их другое название – рабочая группа, т.е. небольшой коллектив пользователей.

 

 

 


Рисунок 1.2. Одноранговая сеть.

 

Одноранговые сети относительно просты. Этим обычно и объясняется меньшая стоимость одноранговых сетей по сравнению со стоимостью сетей на основе сервера.

Одноранговая сеть вполне подходит там, где:

- количество пользователей не превышает 10 человек;

- пользователи расположены компактно;

- вопросы защиты данных не критичны;

- в обозримом будущем не ожидается значительного расширения фирмы и, следовательно, сети.

Если эти условия выполняются, выбор одноранговой сети будет скорее всего правильным.

 


Сети на основе сервера

Если к одноранговой сети, где компьютеры выступают в роли и клиентов, и серверов, подключить более 10 пользователей, она может не справиться с объёмом возложенных на неё задач. Поэтому большинство сетей имеют другую конфигурацию – они работают на основе выделенного сервера (рис. 1.3). Выделенным сервером называется такой сервер, который функционирует только как сервер и не используется в качестве клиента или рабочей станции. Он оптимизирован для быстрой обработки запросов от сетевых клиентов и для повышения защищённости файлов и каталогов. Сети на основе сервера стали промышленным стандартом.

 

 

 

 


Рисунок 1.3. Сеть на основе сервера.

 

При увеличении размера сети и объёмов сетевого графика необходимо увеличивать количество серверов. Распределение задач среди нескольких серверов гарантирует, что каждая задача будет выполняться наиболее эффективно.

Основным аргументом, определяющим выбор сети на основе сервера, является, как правило, надёжность защиты данных. В таких сетях, как Windows NT, проблемами безопасности может заниматься один администратор: он формирует единую политику безопасности и применяет её в отношении каждого сетевого пользователя.

Сети на основе сервера способны поддерживать тысячи пользователей. Сетями такого размера, будь они одноранговыми, управлять было бы невозможно.

 


Обзор топологии сетей

 

Термин «топология», или «топология сети», характеризует физическое расположение компьютеров, кабелей и других компонентов сети. Топология – это стандартный термин, который используется профессионалами при описании основной компоновки сети. Кроме термина «топология», для описания физической компоновки употребляют также следующее:

- физическое расположение;

- компоновка;

- диаграмма;

- карта.

Топология сети обуславливает её характеристики. В частности, выбор той или иной топологии влияет:

- на состав необходимого сетевого оборудования;

- характеристики сетевого оборудования;

- возможности расширения сети;

- способ управления сетью.

Чтобы совместно использовать ресурсы или выполнять другие сетевые задачи, компьютеры должны быть подключены друг к другу. Для этой цели в большинстве сетей применяется кабель.

Однако просто подключить компьютер к кабелю, соединяющему другие компьютеры, недостаточно. Разные типы кабелей в сочетании с различными сетевыми платами, сетевыми операционными системами и другими компонентами требуют и различного взаимного расположения компьютеров.

Каждая топология сети налагает ряд условий. Например, она может диктовать не только тип кабеля, но и способ его прокладки.

Топология может также определять способ взаимодействия компьютеров в сети. Различным видам топологий соответствуют различные методы взаимодействия, и эти методы оказывают большое влияние на сеть.

Все сети строятся на основе трёх базовых топологий:

- шина;

- звезда;

- кольцо.

Если компьютеры подключены вдоль одного кабеля (сегмента), топология называется шиной. В том случае, когда компьютеры подключены к сегментам кабеля, исходящим из одной точки, или концентратора, топология называется звездой. Если кабель, к которому подключены компьютеры, замкнут в кольцо, такая топология называется кольца.

Хотя сами по себе базовые топологии несложны, в реальности часто встречаются довольно сложные комбинации, объединяющие свойства нескольких топологий.

 

1.3.1 Шина

Топологию «шина» часто называют «линейной шиной». Данная топология относится к наиболее простым и широко распространённым топологиям. В ней используется один кабель, именуемый магистралью или сегментом, вдоль которого подключены все компьютеры сети (рис. 1.4).

 

 


Рисунок 1.4. Простая сеть с топологией «шина»

 


В сети с топологией «шина» компьютеры адресуют данные конкретному компьютеру, передавая их по кабелю в виде электрических сигналов. Что бы понять процесс взаимодействия компьютеров по шине, необходимо уяснить следующие понятия:

- передача сигнала;

- отражение сигнала;

- терминатор.

Данные в виде электрических сигналов передаются всем компьютерам сети; однако информацию принимает только тот, адрес которого соответствует адресу получателя, зашифрованному в этих сигналах (рис.1.5). Причём в каждый момент времени только один компьютер может вести передачу.

 

 

 

 


Рисунок 1.5. Данные посылаются всем компьютерам, но принимает их только адресат

 

Так как данные в сеть передаются лишь одним компьютером, её производительность зависит от количества компьютеров, подключённых к шине. Чем их больше, т.е. чем больше компьютеров, ожидающих передачи данных, тем медленнее работает сеть.

Однако вывести прямую зависимость между пропускной способностью сети и количеством компьютеров в ней нельзя. Ибо, кроме числа компьютеров, на быстродействие сети влияет множество факторов, в том числе:

- характеристики аппаратного обеспечения компьютеров в сети;

- частота, с которой компьютеры передают данные;

- тип работающих сетевых приложений;

- тип сетевого кабеля;

- расстояние между компьютерами в сети.

Шина – пассивная топология. Это значит, что компьютеры только «слушают» передаваемые по сети данные, но не перемещают их от отправителя к получателю. Поэтому, если один из компьютеров выйдет из строя, это не скажется на работе стальных. В активных топологиях компьютеры регенерируют сигналы и передают их по сети.

Данные, или электрические сигналы, распространяются по всей сети – от одного конца кабеля к другому. Если не предпринимать никаких специальных действий, сигнал, достигая конца кабеля, будет отражаться и не позволит другим компьютерам осуществлять передачу. Поэтому, после того как данные достигнут адресата, электрические сигналы необходимо погасить.

Чтобы предотвратить отражение электрических сигналов, на каждом конце кабеля устанавливают терминаторы, поглощающие эти сигналы.

Все концы сетевого кабеля должны быть к чему-нибудь подключены, например, к компьютеру или к баррел-коннектору – для увеличения длины кабеля. К любому свободному – не подключённому – концу кабеля должен быть подсоединён терминатор, чтобы предотвратить отражение электрических сигналов.

Разрыв сетевого кабеля происходит при его физическом разрыве или отсоединении одного из его концов. Возможна также ситуация, когда на одном или нескольких концах кабеля отсутствуют терминаторы, что приводит к отражению электрических сигналов в кабеле и прекращению функционирования сети. Сеть «падает».

Сами по себе компьютеры в сети остаются полностью работоспособными, но до тех пор, пока сегмент разорван, они не могут взаимодействовать друг с другом.

Увеличение участка, охватываемого сетью, вызывает необходимость её расширения. В сети с топологией «шина» кабель обычно удлиняется двумя способами.

1. Для соединения двух отрезков кабеля можно воспользоваться баррел-коннектором. Но злоупотреблять ими не стоит, так как сигнал при этом ослабевает. Лучше купить один длинный кабель, чем соединять несколько коротких отрезков. При большом количестве «стыковок» нередко происходит искажение сигнала.

2. Для соединения двух отрезков кабеля служит репитер. В отличие от коннектора, он усиливает сигнал перед передачей его в следующий сегмент. Поэтому предпочтительнее использовать репитер, чем баррел-коннектор или даже один длинный кабель: сигналы на большие расстояния пойдут без искажений.

 

1.3.2 Звезда

При топологии «звезда» все компьютеры с помощью сегментов кабеля подключаются к центральному компоненту, именуемому концентратором (рис. 1.6). Сигналы от передающего компьютера поступают через концентратор ко всем остальным. Эта топология возникла на заре вычислительной техники, когда компьютеры были подключены к центральному, главному, компьютеру.

 

 

 


Рисунок 1.6. Простая сеть с топологией «звезда"

 


В сетях с топологией «звезда» подключение кабеля и управление конфигурацией сети централизованы. Но есть и недостаток: так как все компьютеры подключены к центральной точке, для больших сетей значительно увеличивается расход кабеля. К тому же, если центральный компонент выйдет из строя, нарушится работа всей сети.

А если выйдет из строя только один компьютер (или кабель, соединяющий его с концентратором), то лишь этот компьютер не сможет передавать или принимать данные по сети. На остальные компьютеры в сети это не повлияет.

 

1.3.3 Кольцо

При топологии «кольцо» компьютеры подключаются к кабелю, замкнутому в кольцо. Поэтому у кабеля просто не может быть свободного конца, к которому надо подключать терминатор (рис. 1.7). Сигналы передаются по кольцу в одном направлении и проходят через каждый компьютер. В отличие от пассивной топологии «шина», здесь каждый компьютер выступает в роли репитера, усиливая сигналы и передавая их следующему компьютеру. Поэтому, если выйдет из строя один компьютер, прекращает функционировать вся сеть.

 

 

 


Рисунок 1.7. Простая сеть с топологией «кольцо»

 

Передача маркера

Один из принципов передачи данных в кольцевой сети носит название передачи маркера. Суть его такова. Маркер последовательно, от одного компьютера к другому, передаётся до тех пор, пока его не получит тот, который «хочет» передать данные. Передающий компьютер изменяет маркер, помещает электронный адрес в данные и посылает их по кольцу.

Данные проходят через каждый компьютер, пока не окажутся у того, чей адрес совпадает с адресом получателя, указанным в данных.

После этого принимающий компьютер посылает передающему сообщение, где подтверждает факт приёма данных. Получив подтверждение, передающий компьютер создаёт новый маркер и возвращает его в сеть.

На первый взгляд кажется, что передача маркера отнимает много времени, однако на самом деле маркер передвигается практически со скоростью света. В кольце диаметром 200 м маркер может циркулировать с частотой 10000 оборотов в секунду.

 

1.3.4 Комбинированные топологии

В настоящее время часто используются топологии, которые комбинируют компоновку сети по принципу шины, звезды и кольца.

Звезда-шина

Звезда-шина – это комбинация топологий «шина» и «звезда». Чаще всего это выглядит так: несколько сетей с топологией «звезда» объединяются при помощи магистральной линейной шины (рис.1.8).

В этом случае выход из строя одного компьютера не оказывает никакого влияния на сеть – остальные компьютеры по-прежнему взаимодействуют друг с другом. А выход из строя концентратора повлечёт за собой остановку подключённых к нему компьютеров и концентраторов.

 


             
   
 

 


Рисунок 1.8. Сеть с топологией «звезда-шина»

 

Звезда-кольцо

Звезда-кольцо кажется несколько похожей на звезду-шину. И в той, и в другой топологии компьютеры подключены к концентратору, который фактически и формирует кольцо или шину. Отличие в том, что концентраторы в звезде-шине соединены магистральной линейной шиной, а в звезде-кольце на основе главного концентратора они образуют звезду (рис.1.9).

 

 

 

 


Рисунок 1.9. Сеть с топологией «звезда-кольцо»

 












Выводы

 

В этом разделе были рассмотрены основные концепции построения, назначение и типы сетей, архитектура ЛВС Ethernet. На основании этого можно сделать следующие выводы:

- сеть Ethernet является одной из наиболее популярных современных локальных сетей и отвечает всем предъявляемым требованиям;

- сеть Ethernet использует топологию «звезда-шина», что позволяет ей без особых трудностей изменять, расширять и модернизировать сеть с минимальными трудовыми и денежными затратами;

- ЛВС Ethernet имеет высокую пропускную способность, что позволяет работать с современными мультимедийными приложениями.

 



Витая пара

Витая пара в настоящее время является самой распространённой средой передачи и представляет собой пару свитых проводов. Кабель, составленный из нескольких витых пар, как правило, покрыт жёсткой пластиковой оболочкой, предохраняющей его от воздействия внешней среды и механических повреждений. Схема витой пары представлена на рис. 2.1 .

 

 

 


Рисунок 2.1. Кабель из витых пар

 

В нормальных условиях витая пара поддерживает скорость передачи данных от 10 до 100 Мбит/с. Однако ряд факторов может существенно снизить скорость передачи данных, в частности, потеря данных, перекрёстное соединение и влияние электромагнитного излучения.

Для уменьшения влияния электрических и магнитных полей применяется экранирование (кабель из витых пар покрывается фольгой или оплёткой). Но после экранирования витой пары в значительной степени увеличивается затухание сигнала. Под затуханием сигнала подразумевается его ослабление при передаче из одной точки сети в другую. Экранирование изменяет сопротивление, индуктивность и ёмкость таким образом, что линия становится склонной к потере данных. Подобные потери могут сделать витую пару нежелательной и ненадёжной средой передачи. И экранированная, и неэкранированная витая пара используется для передачи данных на несколько сотен метров.

В соответствии со спецификациями ассоциации электронной и телекоммуникационной промышленности вводится пять стандартных категорий кабеля из витых пар. При определении категорий кабеля используется только неэкранированная витая пара (UTP).

- Кабель первой категории используется для передачи голосовых данных. С начала 80-х годов кабель САТ 1 используется в основном в качестве проводки телефонных линий. Кабель первой категории не сертифицирован для передачи данных любого типа и в большинстве случаев не рассматривается как среда для передачи цифровых данных.

- Кабель второй категории используется для передачи информации со скоростью не более 4 Мбит/с. Этот тип проводки характерен для сетей устаревшей сетевой топологии, использующих протокол с передачей маркера. Кабель тактируется частотой 1 Мгц.

- Кабель третьей категории в основном используется в локальных сетях с устаревшей архитектурой Ethernet 10base-T и сертифицирован для передачи данных со скоростью до 16 Мбит/с. Кабель тактируется частотой 16 МГц.

- Кабель четвёртой категории используется в качестве среды соединения сетей с кольцевой архитектурой или архитектурой 10base-T/100base-T. Кабель САТ 4 сертифицирован для передачи данных со скоростью до 16Мбит/с и состоит из четырёх витых пар. Тактируется частотой 20 МГц.

- Кабель пятой категории является самой распространённой средой передачи для Ethernet. Кабель поддерживает скорость передачи данных до 100Мбит/с и используется в сетях с архитектурой 100base-T и 10base-T. Кабель тактируется частотой 100 МГц.

 


Коаксиальный кабель

Коаксиальный кабель является широко распространённой и достаточно удобной средой передачи данных. Такое название кабель получил вследствие того, что состоит из двух проводников. Один проводник (цельная или витая жила) экранируется вторым, который тоже может быть сплошным или переплетённым. Проводники, как правило, разделены слоем диэлектрического материала. Сам кабель покрыт пластиковой оболочкой. Коаксиальный кабель лучше защищён от помех и позволяет увеличить длину сегмента сети. Использующие коаксиальный кабель сети стандартов 10base-2 – приблизительно 180 м. На рис. 2.2 и 2.3 показан коаксиальный кабель в разрезе.

 

 

 


Рисунок 2.2. Сечение коаксиального кабеля.

 

 

 

 

 


Рисунок 2.3. Продольный разрез коаксиального кабеля.

 


С увеличением диаметра коаксиального кабеля пропускная способность повышается. Однако одновременно с этим увеличиваются затраты на выполнение проводки из такого кабеля, поскольку необходимо использовать специальные инструменты. Характерные свойства коаксиального кабеля:

- Он менее подвержен влиянию шума по сравнению с витой парой.

- Кабель состоит из двух концентрических проводников, разделённых слоем диэлектрического материала.

- Импеданс коаксиального кабеля может быть равен 75 Ом (кабель толщиной ½ дюйма) или 50 Ом (кабель толщиной 3/8 дюйма).

 




Волоконно-оптический кабель

Это тонкая и гибкая среда, позволяющая передавать данные в виде световых волн по стеклянному «проводнику» или кабелю. Волоконно-оптические линии связи используются на расстояниях свыше одного километра. Характерной их особенностью является высокая защищённость от несанкционированного подключения (что не удивительно, поскольку для передачи данных не используются электрические сигналы). Существует две разновидности кабеля: одномодовый и многомодовый.

Платы сетевого адаптера

Платы сетевого адаптера выступают в качестве физического интерфейса между ПК и средой передачи. Платы вставляются в ISA и PCI слоты расширения всех сетевых ПК и серверов.

Чтобы обеспечить физическое соединение между ПК и сетью, к соответствуюшему разъёму, или порту, платы подключается сетевой кабель.

Платы сетевых адаптеров предназначены для :

- подготовки данных, поступающих от ПК, к передаче по сетевому кабелю;

- передачи данных к другим ПК;

- управления потоками данных между ПК и кабелем.

Плата сетевого адаптера состоит из аппаратной части и встроенных программ, записанных в ПЗУ. Эти программы реализуют функции подуровней управления логической связью и управления доступом к среде канального уровня OSI.

Перед тем как послать данные в сеть, плата сетевого адаптера должна перевести их из формы, понятной ПК, в форму в которой они могут передаваться по сетевому кабелю.

Плата сетевого адаптера принимает параллельные данные и организует их для последовательной, побитовой передачи. Этот процесс завершается переводом цифровых данных ПК в электрические и оптические сигналы, которые и передаются по сетевым кабелям. Отвечает за эти преобразования трансивер (приёмопередатчик).

Плата сетевого адаптера, помимо преобразования данных, должна указать своё местонахождение, или адрес, - чтобы её могли отличить от остальных плат. Для этого на плате сетевого адаптера существуют переключатели, которыми устанавливается номер (адрес) ПК.

Основными элементами сетевых адаптеров являются:

- приёмопередатчик (трансивер);

- сетевой контроллер;

- память микропрограмм;

- оперативная память.

Сетевые адаптеры Ethernet бывают двух типов: со скоростью передачи 10 Мбит/с и 100 Мбит/с. Они известны высокой надёжностью, а возникающие проблемы с кабелем и адаптерами легко поддаются диагностике.



Сетевые серверы

Под сервером понимается компьютер, предоставляющий свои ресурсы другим компьютерам. Сервер осуществляет обработку и хранение основной информации, находящейся в компьютерной сети. В связи с разнообразием используемой информации и видов её обработки существуют различные типы серверов, наиболее распространённым из которых является файловый сервер.

Под файловым сервером понимается компьютер, подключённый к сети используемый для хранения файлов данных к которым обращаются рабочие станции. С точки зрения пользователя файловый сервер рассматривается как центральный архив, в котором хранится общая ля всех рабочих станций информация. Централизованное хранение данных позволяет более эффективно осуществлять контроль над данными, а также доступ к ним со стороны пользователей.

В более сложных компьютерных сетях кроме файлового сервера могут присутствовать и другие виды серверов, например: сервер печати, сервер базы данных, Web-сервер, почтовый сервер и др.

По составу оборудования серверы мало чем отличаются от рабочих станций, однако к самому оборудованию предъявляются более высокие требования. Это связано с тем, что файловый сервер должен достаточно быстро обрабатывать множество запросов от всех рабочих станций. С увеличением числа рабочих станций и сложности решаемых задач значительно возрастают требования к серверу по производительности, объёму памяти, надёжности. В табл 2.1 представлены минимальные требования к аппаратному обеспечению для сетевого сервера.

Таблица 2.1 Требования к аппаратному обеспечению для сетевого сервера

Категория Требования для Intel-платформ Требования для RISC-платформ
Тип процессора 32-битный х86 (80486/33 или выше) Поддерживаемый RISC-процессор
Объём оперативной памяти Минимум 16 Мб Минимум 16 Мб
Объём жёсткого диска Один или несколько жёстких дисков минимум с 125 Мб свободного пространства для Windows NT Server Один или несколько жёстких дисков минимум с 160 Мб свободного пространства для Windows NT Server
Другие дисковые устройства 3,5” дисковод высокой плотности плюс CD-ROM дисковод CD-ROM дисковод
Видеосистема Видеоадаптер VGA (или лучше) Видеоадаптер VGA (или лучше)
Другие компоненты Одна или несколько плат сетевого адаптера Одна или несколько плат сетевого адаптера

 

Для обеспечения требуемой производительности серверы оснащаются высокопроизводительными процессорами, например Pentium II с тактовой частотой 266-450 МГц.

С целью повышения производительности в серверах широко используется кэш-память. Эта сверхбыстродействующая память предназначена для временного хранения команд и данных, к которым происходит наиболее частое обращение. Кэш-память использует специализированные быстродействующие микросхемы SRAM-памяти. Содержимое кэш-памяти постоянно меняется, т.е. информация, ряд технических решений. В первую очередь это касается к которой обращаются менее часто, заменяется на информацию к которой происходит наиболее частое обращение.

С целью повышения надёжности и отказоустойчивости в сетевых серверах применяется использования в качестве оперативной памяти, так называемой EDC-памяти, обеспечивающей в процессе чтения/записи обнаружение и исправление одиночных ошибок. В настоящее время это тип памяти переходит в стандартное оборудование сетевых серверов [3].

Для предотвращения потери информации при работе с жёсткими дисками в серверах используется система RAID – избыточные массивы недорогих дисков. Системы RAID включает набор жёстких дисков, при этом реализуются различные режимы одновременной записи одной и той же на несколько жёстких дисков. Это позволяет в случае сбоя жёсткого диска восстанавливать данные с резервной копии, находящейся на другом диске. Существует 5 уровней системы RAID, отличающихся способом организации дублирования информации и, соответственно, возможностью её восстановления.

Для обеспечения нормальной работы сети и предотвращения потери информации при внезапном отключении питания сервер должен быть снабжён источником бесперебойного питания (UPS).Источник бесперебойного питания использует аккумуляторную батарею для поддержания работоспособности сервера в течение времени, достаточного для сохранения данных и нормального завершения работы.

Сетевые серверы должны иметь возможность наращивать свои ресурсы. В связи с этим серверы проектируются с учётом возможности установки более мощных или дополнительных процессоров, оперативной памяти и жёстких дисков.

 

Обзор операционных систем

 

Unix/Linux

Прародитель сетевых операционных систем UNIX, имеет несколько «потомков» и разновидностей, причём версии её продолжают модернизироваться и улучшаться по сей день. Основные разработчики, корпорации Digital Equipment, Hewlett-Packard и Sun Microsystems, предлагают специальные версии UNIX, работающие на выпускаемых этими компаниями рабочих станциях. Главный вопрос, достаточно продолжительное время связанный с UNIX, заключается в том, будет ли эта операционная система вытеснена операционными системами, работающими на персональных компьютерах. Microsoft и Intel прилагают титанические усилия, пытаясь стать монополистами, однако на рынке всегда найдётся место для производителей, которые в состоянии предложить конкурентоспособные продукты. Специалисты соглашаются с тем, что некоторые «разновидности» UNIX будут развиваться постоянно, что объясняется их тесной связью с Internet.

Операционные системы UNIX изначально задумывались и создавались для обеспечения живучести систем и поддержки сетевого оборудования. Эта причина позволила UNIX просуществовать многие годы в качестве единственно возможного решения. Поддержка многозадачности одновременно сделала UNIX потенциальным кандидатом для использования в скоростных сетях. Высокая производительность и мобильность лишь дополняют список причин. благодаря которым операционная система UNIX может быть использована на сложных рабочих станциях. Применение таким мощным вычислительным станциям можно найти во многих инженерных и научно-исследовательских работах.

Linux представляет собой версию UNIX, адаптированную для процессоров Intel. Большинство преимуществ UNIX при работе на таких платформах остаются незамеченными, поскольку процессоры Intel и их клоны постоянно улучшаются, а взглядыпользователей, как правило, прикованы к программным продуктам компании Microsoft, которые не уступают в эффективности UNIX и поразительно легки в использовании.

 

Windows NT 4

Windows NT можно рассматривать как потенциальную замену известной UNIX или же просто как очередную операционную систему Microsoft. Третья (и основная) версия операционной системы NT имеет разновидности для установки на рабочие станции и на серверы. Основное отличие заключается в использовании оболочки Windows 95. Рассматриваемая операционная система характеризуется и высшим уровнем стабильности работы. Основное внимание разработчики уделили улучшению поддержки внешних устройств и расширению возможности работы с Internet.

Хотя компания Microsoft имела достаточно времени на выпуск новой версии Windows, ей не удалось сделать должный акцент на возможностях работы с Internet и интрасетью. Надеемся, что положение будет исправлено в обновлённых версиях NT.

Windows NT 4 – это сетевая операционная система, предлагающая практически такие же функциональные возможности, что и операционные системы UNIX. Поскольку она базируется на одной из основных операционных систем и действительно является многозадачной средой, NT 4 представляет собой очень эффиктивную платформу. Не следует забывать, что UNIX была разработана почти тридцать лет назад, в то время как NT находится в стадии становления. Этой операционной системе необходимо время на то, чтобы стать такой же сильной, как UNIX.

 

NetWare

Эта лидирующая на рынке сетевая операционная система в последнее время терпит значительные убытки от серъезного застоя. Занимая большой сегмент рынка сетевых операционных систем, компания Novell все же отстала от коньюктуры. Теперь, когда распроданы собственные программные продукты WordPerfect и Borland, взор компании вновь обращен на построение мощных сетевых операционных систем. Novell всегда предлагала прекрасное программное обеспечение, однако, как известно, именно конкуренция способствует созданию самого лучшего.

В отличие от предыдущих двух сетевых операционных систем, которые действительно являются операционными, для NetWare необходима базовая операционная система. Подобный выбор был сознательным решением компании и доказал непреодолимость этого препятствия для Novell.

Программные продукты компании Novell до сих пор достаточно широко представлены во всем мире и являются неотъемлимой частью сетевых сред. Хорошо настроена система подготовки технического персанала, который продолжает и будет продолжать поддерживать данные продукты.

Novell придется смириться с тем, что ее продукты будут считаться менее эффективными по сравнению с программным обеспечением компании Microsoft (или других компаний), поскольку Novell теряет свой сектор рынка. Эта компания все еще выпускает достаточно надежные средства, которые могут работать в течении многих лет. Их высокую производительность стоит рассматривать отдельно. В течении последних нескольких лет компания Novell пытается отреагировать на популярность интрасетей. Ее сетевая операционная система отлично подходит для создания такого рода среды и начинает проявлять себя на рынке. Появление и широкое распостронение броузеров также отразилось на стратегии компании, пытающейся отвоевать небольшой сектор рынка.

 

Выводы

 

В данном разделе был произведён обзор и анализ сетевого оборудования и операционных систем. На основании этого можно сделать следующие выводы:

- в сети Ethernet 10BaseT используется витая пара, являющаяся самой распространённой средой передачи в последнее время;

- при проектировании сети нет необходимости использовать повторители, т.к. они установлены прямо на сетевых адаптерах;

- для взаимодействия ЛВС Ethernet с ЛВС Token Ring используются мосты;

- для оптимизации работы сети необходимо установить сетевой сервер;

- для сервера необходимо установить операционную систему Windows NT, поскольку она является самой перспективной ОС;

- для защиты сетевого оборудования от перепадов напряжения необходимо использовать источник бесперебойного питания.



Выводы

 

По данному разделу можно сформулировать следующие выводы:

- для построения кабельной системы ЛВС Ethernet 10BaseT используется кабель «неэкранированная витая пара»;

- в качестве концентраторов используются Ethernet HUB 1016B;

- используются сетевые адаптеры Ethernet NE 2000;

- для взаимодействия с сетью Token Ring используется мост Ethernet RS 232;

- на сети устанавливается сервер Compaq ProLiant 2000;

- в качестве сетевой операционной системы используется Windows NT 4,0.

 



Проектирование ЛВС Ethernet

Принцип построения СКС

При проектировании и монтаже структурированной кабельной системы (СКС) для рабочих мест офиса на базе протокола Ethernet учитываются рекомендации общепризнанных американских и международных стандартов в области строительства телекоммуникационных кабельных сетей таких как: EIA/TIA 568A, EIA/TIA/TSB 36, EIA/TIA/TSB 40, EIA/TIA 569, ISO/IEC 11801.

Кабельная система предприятия, построенная в соответствии с рекомендациями, указанных выше стандартов, позволяет работать активному сетевому оборудованию в полосе частот до 100 Мгц и поддерживать как существующие стандарты ЛВС Ethernet, Token Ring, 100VG-AnyLAN, Fast Ethernet, TP-PMD, ISDN, ATM, так и те, которые могут возникнуть в будущем.

Локальная вычислительная сеть предприятия, описываемая в данном проекте, реализована на базе структурированной кабельной системы по топологии «звезда-шина» с одним распределительным узлом. СКС обеспечивает взаимодействие активного сетевого оборудования, установленного в распределительных шкафах и сетевых адаптеров рабочих станций на физическом уровне эталонных моделей взаимодействия открытых систем (OSI).

В состав кабельной системы входят следующие компоненты: коммутационные шнуры для подключения активного сетевого оборудования, коммутационные панели для механического переключения рабочих мест, горизонтальные абонентские кабели, проложенные к рабочим местам, модульные розетки на рабочих местах и коммутационные шнуры для подключения рабочих станций к розеткам.

Все перечисленные составляющие СКС как по отдельности, так и все вместе, в смонтированном виде, соответствует категории 5 (стандарт EIA/TIA 568A TSB-40).

Неудобства, связанные с применением традиционных технологий при построении неструктурированных кабельных систем общеизвестны: сложность и дороговизна внесения изменений, малая надёжность, высокая зависимость кабельной системы от применяемой сетевой технологии. Неструктурированная кабельная система строится быстрее, но её гораздо сложнее модернизировать. Такая проводка для локальных сетей сохраняется без переоборудования примерно 3-5 лет. В то же время структурированная система строится основательно, как всякое долговременное сооружение. В ней закладывается структурированная избыточность, предусматривающая дополнительные рабочие места, возможность перемещения оборудования и персонала. Избыточность СКС требует дополнительного количества кабеля, розеток, кросс-панелей, однако дополнительные капитальные затраты, необходимые для создания СКС, быстро окупаются в процессе эксплуатации сети. СКС обладает следующими преимуществами:

- максимальная гибкость в размещении соответствующего коммуникационного оборудования;

- возможность внедрять новые приложения и технологии, не заботясь об ограничениях, накладываемых традиционными неструктурированными кабельными системами;

- гарантированное соответствие всех её компонентов международным стандартам;

- возможность подключения различных видов оборудования с помощью универсальных розеток на рабочих местах;

- допускается управление и администрирование минимальным количеством обслуживающего персонала;

- использование единой кабельной проводки для передачи информации.

Кабельная система офиса, спроектированная в данном дипломном проекте, позволяет работать активному сетевому оборудованию в полосе частот до 100 Мгц и поддерживать как существующие стандарты ЛВС Token Ring, Ethernet, Fast Ethernet и др., так и те, которые могут возникнуть в будущем.

 

Анализ кабельной системы

Структурированная кабельная система будет реализована с использованием коммутационного оборудования и кабеля «неэкранированная витая пара» (UTP) 5-й категории. Общее количество рабочих мест – 48. Учитывая 30%-й запас на будущее число рабочих мест равно 62. На каждом рабочем месте установлена внешняя розетка с одним модулем RJ-45 5-й категории. К каждой компьютерной розетке от шкафа проложен 4-х парный кабель «неэкранированная витая пара» (UTP) 5-й категории. Всё активное и коммутационное оборудование сконцентрировано в шкафу 19” высотой 15U (1U=1Unit – высота единицы стандартного оборудования – 44,45 мм). Схема расположения и маркировки сетевого оборудования приведена на плакате.

По заданию дипломного проекта ЛВС Ethernet должна обеспечивать работу 48 рабочих мест. В СКС закладывается 30% структурной избыточности, предусматривающей дополнительные рабочие места. Следовательно общее количество рабочих мест будет равно 62. На каждом рабочем месте установлена внешняя розетка с одним модулем RJ-45 5-й категории. К каждой компьютерной розетке от шкафа проложен 4-х парный кабель «неэкранированная витая пара» (UTP) 5-й категории. Всё активное и коммутационное оборудование сконцентрировано в шкафу. Соединение линий горизонтальной проводки с портами активного сетевого оборудования осуществляется коммутационными шнурами длиной 1 м через коммутационные каналы 5-й категории.

Все порты панели будут маркированы и соответствуют номеру компьютерной розетки, что предоставляет обслуживающему персоналу возможность простой идентификации каждой абонентской линии .Маркировка кабеля выполняется в процессе монтажа на концах кабеля перед разделкой в коммутационной панели и в розетках на рабочих местах. Для подключения рабочих станций к розеткам используются коммутационные шнуры длиной 0,5м.

СКС предназначена для непрерывного функционирования в течение длительного времени. Началом эксплуатации СКС считается момент подключения к системе активного оборудования передачи данных.

Подключение активного оборудования не должно сопровождаться внесением каких-либо изменений в установленную СКС. Эти подключения должны выполняться отдельными коммутационными шнурами.

 

4.1.3 Расчет длины кабеля

На каждом рабочем месте устанавливается внешняя компьютерная розетка. Всего устанавливается 62 розетки. К каждой розетке от шкафа прокладывается кабель «неэкранированная витая пара» (UTP). Соединение горизонтальной проводки с портами активного сетевого оборудования осуществляется коммутационными шнурами длиной один метр.

Для подключения рабочих станций к розеткам используются коммутационные шнуры длиной три метра. Количество данных шнуров равно 62-ум. На рис. 4.4 изображена структурная схема сети.

Прокладка кабеля выполняется по периметру помещения в кабель-каналах. Кабель прокладывается на высоте не менее 0,5 м от пола. ЛВС размещается на двух этажах здания. Распределительный шкаф устанавливается на первом этаже. Для прокладки кабеля на второй этаж используется специальный люк.

План расположения компьютерных розеток, распределительного шкафа и кабельных трасс от шкафа к розеткам на этажах представлен на плакатах. Общая длина кабеля будет равна сумме длин кабеля от каждой розетки до шкафа. Расчет длины кабеля представлен в табл. 4.1.

 

Таблица 4.1 Расчет длины кабеля

N кабеля Длина кабеля N кабеля Длина кабеля
L1 L2+3=10.5 L32 2.5+2.5+1+0.5=6.5
L2 L3+4=7.5 L33 L32+1.5+10+5.5+1+0.5=25
L3 2+1+0.5=3.5 L34 L32+1.5+10+5.5+0.5=24
L4 2+0.5+0.5=3 L35 L34+4=28
L5 2+2+10.5+5.5+1+0.5+0.5=22 L36 L35+3=31
L6 2+2+10.5+5.5+0.5+0.5=21 L37 L38+0.5+4.5=41
L7 L6+3=24 L38 L39+3.5=36
L8 L7+4=28 L39 L40+1.5=32.5
L9 L10+3.5=33 L40 L41+3.5=31
L10 L11+4.5=29.5 L41 L32+1.5+10+9+0.5=27.5
L11 2+2+10.5+9.5+0.5+0.5=25 L42 L43+1=39.5
L12 L13+1=36.5 L43 L44+3.5=38.5
L13 L14+3.5=35.5 L44 L45+4.5=35
L14 L15+11.5=32 L45 L46+7=30.5
L15 L16+3.5=20.5 L46 L47+3.5=23.5
L16 L17+1=17 L47 L48+4=20
L17 L18+3=16 L48 2.5+2+11+0.5=16
L18 1.5+11+0.5=13 L49 2.5+12+1+0.5=16
L19 11.5+1+0.5=13 L50 L49+1+0.5+9.5+1=28
L20 L19+1+1.5+9.5+1=26 L51 L49+1+0.5+9.5+1=28
L21 L20+5=31 L52 L51+3=31
L22 L21+4.5=35.5 L53 L52+1=32
L23 11.5+3+1+0.5=16 L54 L53+3=35
L24 L23+4.5=20.5 L55 L49+1+0.5+4.5+4=26
L25 L24+3.5=24 L56 2.5+12+1+0.5=16
L26 11.5+3+1+0.5=16 L57 L56+2+4=22
L27 L26+4.5=20.5 L58 L57+1=23
L28 L29+3=13.5 L59 L58+3=26
L29 L30+1=10.5 L60 L59+0.5+4.5=31
L30 L31+3=9.5 L61 L56+4=20
L31 2.5+2.5+1+0.5=6.5 L62 L61+3=23

 


Из данного расчета следует, что длина кабельной системы сети Ethernet будет равна приблизительно 1462,5 метров.

Кабель UTP используемый в данной сети обладает низкой стоимостью, а развертывание данного кабеля не представляет трудностей. Это позволяет построить кабельную систему за достаточно короткий срок и за низкую цену.

 


Таблица 5.1 Основные характеристики ЛВС Ethernet

Топология Звезда-шина
Метод доступа CSMA/CD
Спецификация 802.3
Кабельная система Неэкранированная витая пара (UTP)
Скорость передачи, Мбит/с 10/100
Тип передачи Немодулированный
Волновое сопротивление, Ом 85-115
Максимальная длина кабельного сегмента, м 100
Максимальное число подключаемых ПК, шт. 1024

 

Лучший способ показать производительность – это описать отношение задержки, вносимой кадром, к средней пропускной способности.

Основанием для описания производительности, таким образом является то, что при увеличении загрузки сети пользователь должен ожидать больше времени для начала передачи своих данных. В результате этого увеличивается задержка при передаче данных.

Максимальная скорость передачи кадра в сетях Ethernet зависит от физической скорости передачи данных и от длины поля данных в каждом кадре. Максимальная скорость передачи пакетов получается тогда, когда постоянно передаются короткие кадры с минимумом информации.

В спроектированной ЛВС Ethernet имеется возможность работы со скоростью 10 Мбит/с. Данная сеть может объединить 1024 компьютера и предоставить выход на другую локальную сеть типа Token Ring.

 



Характеристика проекта

 

Для оперативного планирования и управления научными исследованиями и разработками успешно применяется система сетевого планирования (СПУ). Эффективность СПУ в последнее время значительно возросла благодаря широкому применению электронно-вычислительной техники в планировании и управлении.

Общей основой всех систем СПУ является использование всех сетевых моделей, в которых весь комплекс работ расчленяется на отдельные, чётко определённые звенья в их логической последовательности и взаимосвязи. СПУ – один из методов кибернетического подхода к управлению сложными динамическими системами с целью обеспечения минимальных показателей.

Весь комплекс работ по СПУ выполняется в следующей последовательности:

- расчленение комплекса работ по проекту на отдельные этапы и подэтапы, закрепляемые за ответственными исполнителями;

- выявление и описание каждым ответственным исполнителем всех событий и работ, необходимых для выполнения поставленной перед ним конечной цели;

- построение сети;

- определение времени выполнения каждой работы в сети;

- расчёты параметров сетевого графика;

- анализ сетевого графика и его оптимизация (в случае необходимости).

- Все расчёты и исходные данные для построения сетевого графика представлены в таблицах.

 


6.2 Сетевое планирование при проектировании локальной сети

 

В данном проекте применяются две вероятностные оценки продолжительности выполнения работ и сеть с такими оценками называется вероятностной.

Оптимистическая оценка (tmin) – это минимальное необходимое время выполнения работы при наиболее благоприятном стечении обстоятельств.

Пессимистическая оценка (tmax) – максимальное время, необходимое для выполнения работы при наиболее неблагоприятном стечении обстоятельств.

Величина tож представляет собой математическое ожидание или среднее статистическое значение двух оценок продолжительности работ и определяется по формуле 6.1.

 

tож=(3*tmin+2*tmax)/5. (6.1)

 

Мерой неопределённости временных оценок вероятностных работ является дисперсия (С2tож), которая исчисляется по формуле 6.2.

 

C2tож = ((tmax-tmin)/5)2. (6.2)

 

Найденные значения tож округляются до целых чисел. Величина tож проставляется в сети над стрелками, изображающими соответствующие работы (рис. 6.1). В таблице 6.1 представлены подсчитанные величины tож и C2tож.

 


Таблица 6.1 Перечень событий и работ к сетевому графику на проектирование ЛВС Ethernet

Шифр события

Определение события

Шифр следующих работ

Наименование работ

Продолжительность работы, дни

Дисперсия

tmin tmax tож
1 Тема проекта утверждена 1,2 Подбор и изучение литературы по теме 7 9 8 0,16
2 Литература подобрана и изучена 2,3 Обзор и анализ методов и средств построения ЛВС 4 6 5 0,16
3 Обзор и анализ методов произведён 3,4 Выбор среды передачи 1 2 1 0,04
4 Среда передачи выбрана 4,5 Выбор топологии 2 4 3 0,16
    4,12 Выбор сервера 4 6 5 0,16
5 Топология выбрана 5,6 Расчёт количества активных концентраторов 2 3 2 0,04
6 Расчёт количества активных концентраторов сделан 6,7 Расчёт длины кабеля 6 7 6 0,04
    6,9 Выбор активных концентраторов 1 2 1 0,04
7 Длина кабеля расчитана 7,8 Выбор и расчёт остальных компонентов СКС 2 3 2 0,04
8 Выбор и расчёт остальных компонентов СКС сделан 8,19 Выводы по проекту 3 5 4 0,16
9 Активные концентраторы выбраны 9,10 Выбор плат сетевого адаптера 2 3 2 0,04
10 Платы сетевого адаптера выбраны 10,11 Выбор моста 1 2 1 0,04
11 Мост выбран 11,15 Анализ результатов 2 3 2 0,04
12 Выбор сервера сделан 12,13 Анализ ОС 4 5 4 0,04
13 Анализ ОС сделан 13,14 Выбор ОС 1 3 2 0,16
14 ОС выбрана 14,15 Анализ результатов 2 3 2 0,04
15 Анализ результатов сделан 15,16 Расчёт мощности UPS 4 6 5 0,16
16 Расчёт мощности UPS сделан 16,17 Выбор UPS 2 3 2 0,04
17 Выбор UPS сделан 17,18 Проектирование установки оборудования сети 2 4 3 0,16
18 Проектирование установки оборудования сети сделан 18,19 Выводы по проекту 3 5 4 0,16
19 Выводы по проектированию сделаны 19,20 Оформление документации по проекту 7 11 9 0,64

 

Любая последовательность работ в сети, в которой конечное событие каждой работы этой последовательности совпадает с начальным событием следующей за ней работы, называется путём.

Полный путь, имеющий наибольшую продолжительность, называется критическим. Так на графике (рис.6.1)критическим путём является путь с продолжительностью:

tкр=t(1,2)+t(2,3)+t(3,4)+t(4,12)+t(12,13)+t(13,14)+t(14,15)+t(15,16)+t(16,17)+t(17,18)+t(18,19)+t(19,20)=50

Критический путь определяет общую продолжительность комплекса работ. По продолжительности работ и длине критического пути для любого события сети определяется возможный наиболее ранний срок tр(i) его наступления. tр(i) равен продолжительности максимального из предшествующих данному событию путей и определяется по формуле 6.3.


tр(i)=t(L1(i)). (6.3)

 

Если известен ранний срок свершения любого из предшествующих событий, тогда ранний срок свершения следующего за ним события определяется по формуле 6.4.

 

tp(j)=tp(i)=t(i,j), (6.4)

 

где t(i) – продолжительность работы от события i до события j.

Поздний срок свершения i-го события определяется как разность между критическим путём и максимальной продолжительностью пути, следующего за данным событием:

 

tп(i)=tкр-t(L2(i)). (6.5)

 

Все события сетевого графика, за исключением событий критического пути, имеют резервы времени (Pi). Он определяется как разность между самым поздним и самым ранним сроком свершения события:

 

Pi=tп(i)-tp(i). (6.6)

 

Расчёт временных параметров событий представлен в табл 6.2. В таблице подчёркнуты события, лежащие на критическом пути.

 




Таблица 6.2 Расчёт временных параметров событий

Шифр события Ранний срок свершения события Поздний срок свершения события Резерв времени события
1 0 0 0
2 8 8 0
3 13 13 0
4 14 14 0
5 17 19 2
6 19 21 2
7 25 35 10
8 27 37 10
9 20 22 2
10 22 24 2
11 23 25 2
12 19 19 0
13 23 23 0
14 25 25 0
15 27 27 0
16 32 32 0
17 34 34 0
18 37 37 0
19 41 41 0
20 50 50 0

 

Зная ранние и поздние сроки свершения событий, можно для любой работы i, j сети определить также ранние и поздние сроки её начала и окончания.

Самый ранний из возможных сроков начала работы определяется следующим образом:

 

tрн(i,j)=tp(i). (6.7)

 

Самый поздний из допустимых сроков начала работы определяется следующим образом:

 

tпн(i,j)=tп(j)-t(i,j). (6.8)

 

Самый ранний из возможных сроков окончания работы определяется следующим образом:

 


tро(i,j)=tп(j)+t(i,j). (6.9)

 

Самый поздний из допустимых сроков окончания работы определяется следующим образом:

 

tпо(i,j)=tп(j). (6.10)

 

Полный резерв времени работы – это максимальное количество времени, на которое можно увеличить продолжительность работы или отсрочить её начало, не изменяя при этом продолжительности критического пути. Полный резерв времени работы определяется по формуле (6.11).

 

Pп(i,j)=tп(j)-tп(i)-t(i,j). (6.11)

 

Свободный резерв времени – это максимальное количество времени, на которое можно увеличить продолжительность работы или отсрочить её начало, не изменяя при этом ранних сроков начала последующих работ, при условии, что начальное событие этой работы наступило в свой срок. Свободный резерв времени определяется по формуле (6.12).

 

Pс(i,j)=tр(j)-tр(i)-t(i,j). (6.12)

 

Расчёт временных параметров представлен в табл. 6.3.

 


Таблица 6.3 Расчёт временных параметров работ

Шифр работы

Продолжительность работы, дн.

Наиболее раннее время

Наиболее позднее время

Резерв времени

начала работы окончания работы начала работы окончания работы полный свободный
1,2 8 0 8 0 8 0 0
2,3 5 8 13 8 13 0 0
3,4 1 13 14 13 14 0 0
4,5 3 14 17 16 19 2 0
4,12 5 14 19 14 19 0 0
5,6 2 17 19 19 21 2 0
6,7 6 19 25 29 35 10 0
6,9 1 19 20 21 22 2 0
7,8 2 25 27 35 37 10 0
8,19 4 27 31 37 41 10 9
9,10 2 20 22 22 24 2 0
10,11 1 22 23 24 25 2 0
11,15 2 23 25 25 27 2 2
12,13 4 19 23 19 23 0 0
13,14 2 23 25 23 25 0 0
14,15 2 25 27 25 27 0 0
15,16 5 27 32 27 32 0 0
16,17 2 32 34 32 34 0 0
17,18 3 34 37 34 37 0 0
18,19 4 37 41 37 41 0 0
19,20 9 41 50 41 50 0 0

 

Для анализа сетевого графика после расчёта параметров привязываем его к календарным датам. привязка показана на рис.6.2, причём события зафиксированы по ранним срокам их свершения. такая привязка позволяет установить календарные сроки выполнения отдельных работ и сопоставить их с теми директивными сроками, которые устанавливаются для отдельных этапов проекта плановыми организациями. кроме того, привязка помогает в наглядной форме представить резервы времени работ (на графике это работы 8,19 и 11,15), а также составить график загрузки по исполнителям.

Календарный график загрузки исполнителей проекта, представленный на рис.6.3, показывает, что в работе принимают участие 3 исполнителя: 2 младших научных сотрудника и 1 старший научный сотрудник.

Характерным моментом анализа вероятностных сетевых графиков является определение вероятности P{tкр≤Тд} того, что завершающее событие совершается в заданный срок.вероятность определяется по формуле 6.13.


P{tкр≤Тд}=Ф(х), (6.13)

 

где х=(Тд-tкр)/Сtкр – аргумент функции нормального распределения;

Тд – заданный директивный срок завершения комплекса работ;

tкр – критический путь, определяемый при расчёте сетевого графика;

Сtкр – среднеквадратическое отклонения срока наступления завершающего события, которое определяется по формуле

 

Сtкр=√ΣC2(i,j)tкр , (6.14)

 

где ΣC2(i,j)tкр – сумма величин дисперсий работ, лежащих на критическом пути;

Ф(х) – функция нормального распределения, значение которой берётся из приложений.

ΣC2(i,j)tкр=0.16+0.16+0.04+0.16+0.04+0.16+0.04+0.16+0.04+0.16+0.64=1.76

Сtкр= =1.33

 


Расчёт сметы затрат

 

В плановую себестоимость проекта включаются все затраты, связанные с её выполнением, независимо от источника их финансирования.

Затраты на статью определяются по действующим ценам с учётом транспортно-заготовительных расходов, величина которых составляет 3-5%.

Расчёт этих затрат производится по форме, приведённой в табл. 6.4.

 


Таблица 6.4 Расчёт затрат по статье «Материалы»

Наименование материала и других материальных ресурсов Единица измерения Норма расхода Цена за единицу, тыс. руб. Сумма, тыс. руб.
Кабель UTP 5-ой категории м 1500 96 144000
Розетка RJ-45 шт. 62 1911 118482
Разъём RJ-45 шт. 310 120 37200
Сетевой адаптер Ethernet NE-2000 10 Мбит шт. 62 3600 223200
Активный концентратор Ethernet HUB 16xUTP+BNC шт. 4 27000 108000
Мост шт. 1 51000 51000
Источник бесперебойного питания Back-UPS шт. 1 54000 54000
Сервер шт. 1 537000 537000
Шкаф 12 U 19” шт. 1 90000 90000
Коммутационная панель 19”,32 порта UTP, 5 кат. шт. 2 36000 72000
ИТОГО       1434882
Транспортно-заготовительные расходы 5%     71744
ВСЕГО       1506626

 

На статью «Основная заработная плата» относятся выплаты по заработной плате, исчислённые исходя из ставок и должностных окладов научных сотрудников.

Расчёт основной заработной платы производится по форме, приведённой в табл. 6.5.

 


Таблица 6.5 Расчёт основной заработной платы

Исполнитель Трудоёмкость, чел.-дн. Заработная плата за день работы, тыс. руб. Сумма з/платы, тыс. руб.
Старший научный сотрудник 50 800 40000
1-й младший научный сотрудник 40 600 24000
2-й младший научный сотрудник 48 600 28800

 


На основании расчёта всех перечисленных выше статей затрат составляется плановая калькуляция и цена отдельного проекта, приведённая в табл. 6.6.

 

Таблица 6.6 Калькуляция плановой себестоимости и цены проектирования

Статьи затрат Условные обозначения Методика расчёта Сумма затрат, тыс. руб.
1. Материалы Рм Расчёт (табл.) 1506626
2. Основная заработная плата Зо Расчёт (табл.) 92800
3. Дополнительная заработная плата Зд Зо*Нд/100, Нд=20..25% 21344
4. Отчисления в фонд социальной защиты населения Рсз (Зо+Зд)*Нсз/100, Нсз=36% 41091.84
5. Отчисления в бюджет и внебюджетные фонды Рн (Зо+Зд)*Нр/100%, Нр=9% 10272.96
6. Амортизация основных производственных фондов Ао Зо*На/100, На=15..20% 3628.48
7. Расход на служебные командировки Рком Расчёт либо 4..10% от Зо 7424
8. Прочие полные расходы Рпр (Рм+Зо+Зд+Рсз+Рком)*Нпр/100, Нпр=8% 133542.87
9. Косвенные накладные расходы Ркос Зо*Нкос/100,Нкос=150..300% 213440
10. Итого полная себистоимость Сп Рм+Зо+Зд+Рсз+Рком+Рпр+Ркос 2016268.71
11. Плановая прибыль Пп Сп*Нп/100, Нп=15..30% 504067.18
12. Оптовая цена Цопт Сп+Пп 2520335.89
13. Добавленная стоимость ДС Зо+Зд+Рсз+Ао+Пп 662931.5
14. Налог на ДС НДС ДС*НДС/100, Ндс=20% 132586.3
15. Отчисления в специальные фонды Осф (Сп+Пп+НДС)*Нсф/100, Нсф=2.75% 72955.36
16. Отпускная свободная цена Цотп Сп+Пп+НДС+Осф 2725887.55

 


Поскольку работа носит не НИР-овский, а проектный характер, то в цене так же учитываются отчисления в бюджет и налог на добавленную стоимость.

 





Выводы

 

Рациональное освещение производственных помещений, занимает важное место среди санитарно-гигиенических мероприятий по оздоровлению условий труда в промышленности; произведено проектирование рационального производственного освещения с выбором источников света и их световых потоков.

В результате расчёта было получено количество светильников Nсв = 6.



Заключение

 

В данном дипломном проекте была спроектирована локальная сеть Ethernet для рабочих мест офиса. Данная сеть позволяет подключить 62 рабочие станции. Сеть предусматривает взаимодействие с сетью Token Ring. Обеспечивается передача данных со скоростью 10 Мбит/с.

В данном проекте были изучены принципы построения сетей, изучена архитектура сети Ethernet, подобрано сетевое оборудование, спроектирована структурированная кабельная система. Данная кабельная система обладает максимальной гибкостью, возможностью внедрения новых технологий, возможностью подключения различных видов оборудования.

Также был произведён расчёт длин кабеля и мощности устанавливаемого источника бесперебойного питания.

Спроектированная сеть соответствует установленным требованиям и стандартам и является высокопроизводительной и надёжной сетью.

Также были описаны требования к освещению рабочих мест и произведён расчёт освещённости рабочего места оператора. Было дано экономическое обоснование проекта и рассчитана смета затрат на проектирование сети.

 



Литература

 

1. Назаров С.В. и др. Локальные вычислительные сети. – М.: Финансы и статистика, 1994. – 208 с.

2. Спортак М.А. и др. Высокопроизводительные сети. Энциклопедия пользователя / Пер. с англ. - к.: издательство Диа Софт, 1998.- 432 с.

3. Microsoft Corporation. Компьютерные сети. Учебный курс / Пер. с англ. – М.: Русская редакция, 1997.- 696 с.

4. Нессер Д.ДЖ. Оптимизация и поиск неисправностей в сетях. – К.: Диалектика, 1996.- 384 с.

5. Анализ локальных сетей Net Ware / Пер. с англ. – М.: ЛОРИ, 1995.- 596 с.

6. Сети и системы связи. Вып. 4.- М.:

7. Сети и системы связи. Вып. 8.- М.:

8. Сети и системы связи. Вып. 11.- М.:

9. Сети и системы связи. Вып. 12.- М.:

10. Носенко А.А. Сетевые методы планирования НИР и ОКР. Методическое пособие по дипломному проектированию. – Мн.: МРТИ, 1992.- 45 с.

11. Шаниров Р.С. и др. Охрана труда. Методические указания по дипломному проектированию. – Мн.: МРТИ, 1990.- 36 с.

12. Сибаров Ю.Г., Сколотнёв Н.Н. Охрана труда в вычислительных центрах. – М.: Радио и связь, 1990.- 199 с.

13. Павлов С.П. и др. Охрана труда в радиоэлектронной промышленности. – М.: Радио и связь, 1985.- 200 с.

14. Байченко Е.В. и.др. Локальные вычислительные сети. – М.: Радио и связь, 1985.- 304 с.

15. Челлис Д. И др. Основы построения сетей / Пер. с англ. – М.:ЛОРИ, 1997.- 323 с.

16 Русли Д., Мэксвин Д. Сети Windows NT 4.0. / К.: Диалектика, 1997.- 597 с.

Кафедра СиУТ

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К дипломному проекту

на тему:

«Проектирование локальной сети для рабочих мест на базе сети Ethernet»

Минск 2005

 



Содержание

 

1. Концепция построения, назначение и типы сетей

1.1 Архитектура локальной сети Ethernet

1.2 Два типа сетей

1.2.1 Одноранговые сети

1.2.2 Сети на основе сервера

1.3 Обзор топологии сетей

1.3.1 Шина

1.3.2 Звезда

1.3.3 Кольцо

1.3.4 Комбинированные топологии

Выводы

Обзор и анализ сетевого оборудования и операционных систем

Дата: 2019-07-30, просмотров: 880.