ЛЕКЦИЯ 15. Восстановление после сбоев
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

15.1 Понятие восстановления системы

15.2 Транзакции

15.3 Алгоритм восстановления после сбоя системы

15.4 Параллелизм. Проблемы параллелизма

15.5 Понятие блокировки

15.6 Решение проблем параллелизма

15.7 Тупиковые ситуации

15.8 Способность к упорядочению

15.9 Уровни изоляции транзакции

15.10 Поддержка в языке SQL

 

Понятие восстановления системы

 

Восстановление в системе управления базами данных, означает в первую очередь восстановление самой базы данных, т.е. возвращение базы данных в правильное состояние, если какой-либо сбой сделал текущее состояние неправильным или подозрительным. Основной принцип, на котором строится такое восстановление, – это избыточность. Избыточность организуется на физическом уровне. Такая избыточность будет скрыта от пользователя, а следовательно, не видна на логическом уровне. Другими словами, если любая часть информации, содержащаяся в базе данных, может быть реконструирована из другой хранимой в системе избыточной информации, значит, база данных восстанавливаема.

 

Транзакции

Понятие транзакции

Транзакция – это логическая единица работы. Например. Предположим сначала, что отношение Students (отношение студентов) включает дополнительный атрибут AvgMark, представляющий собой средний балл студента, по результатам сдачи текущей сессии. Значение AvgMark для любой определенной детали предполагается равным среднему арифметическому всех значений Mark из таблицы Marks для всех оценок полученных в текущем семестре.

В приведенном примере предполагается, что речь идет об одиночной, атомарной операции. На самом деле добавление новой оценки в таблицу Marks – это выполнение двух обновлений в базе данных (под обновлениями здесь, конечно, понимаются операции insert, delete, а также сами по себе операции update). Более того, в базе данных между этими двумя обновлениями временно нарушается требование, что значение AvgMark для студента 1 равно среднему арифметическому всех значений поля Mark для студента 1 в текущем семестре. Таким образом, логическая единица работы (т.е. транзакция) – не просто одиночная операция системы баз данных, а скорее согласование нескольких таких операций. В общем, это преобразование одного согласованного состояния базы данных в другое, причем в промежуточных точках база данных находится в несогласованном состоянии.

Из этого следует, что недопустимо, чтобы одно из обновлений было выполнено, а другое нет, так как база данных останется в несогласованном состоянии. В идеальном случае должны быть выполнены оба обновления. Однако нельзя обеспечить стопроцентную гарантию, что так и будет. Не исключена вероятность того, что, система, например, будет разрушена между двумя обновлениями, или же на втором обновлении произойдет арифметическое переполнение и т.п. Система, поддерживающая транзакции, гарантирует, что если во время выполнения неких обновлений произошла ошибка (по любой причине), то все эти обновления будут аннулированы. Таким образом, транзакция или выполняется полностью, или полностью отменяется (как будто она вообще не выполнялась).

Системный компонент, обеспечивающий атомарность (или ее подобие), называется администратором транзакций (или диспетчером транзакций), а ключами к его выполнению служат операторы COMMIT TRANSACTION и ROLLBACK TRANSACTION.

Оператор COMMIT TRANSACTION (для краткости commit) сигнализирует об успешном окончании транзакции. Он сообщает администратору транзакций, что логическая единица работы завершена успешно, база данных вновь находится (или будет находиться) в согласованном состоянии, а все обновления, выполненные логической единицей работы, теперь могут быть зафиксированы, т.е. стать постоянными.

Оператор ROLLBACK TRANSACTION (для краткости ROLLBACK) сигнализирует о неудачном окончании транзакции. Он сообщает администратору транзакций, что произошла какая-то ошибка, база данных находится в несогласованном состоянии и все обновления могут быть отменены, т.е. аннулированы.

Для отмены обновлений система поддерживает файл регистрации, или журнал, на диске, где записываются детали всех операций обновления, в частности новое и старое значения модифицированного объекта. Таким образом, при необходимости отмены некоторого обновления система может использовать соответствующий файл регистрации для возвращения объекта в первоначальное состояние.

Еще один важный момент. Система должна гарантировать, что индивидуальные операторы сами по себе атомарные (т.е. выполняются полностью или не выполняются совсем). Это особенно важно для реляционных систем, в которых операторы многоуровневые и обычно оперируют множеством кортежей одновременно; такой оператор просто не может быть нарушен посреди операции и привести систему в несогласованное состояние. Другими словами, если произошла ошибка во время работы такого оператора, база данных должна остаться полностью неизмененной. Более того, это должно быть справедливо даже в том случае, когда действия оператора являются причиной дополнительной, например каскадной, операции.

 

Восстановление транзакции.

Транзакция начинается с успешного выполнения оператора BEGIN TRANSACTION) и заканчивается успешным выполнением либо оператора COMMIT, либо ROLLBACK. Оператор COMMIT устанавливает так называемую точку фиксации (которая в коммерческих продуктах также называется точкой синхронизации (syncpoint). Точка фиксации соответствует концу логической единицы работы и, следовательно, точке, в которой база данных находится (или будет находиться) в состоянии согласованности. В противовес этому, выполнение оператора ROLLBACK вновь возвращает базу данных в состояние, в котором она была во время операции BEGIN TRANSACTION, т.е. в предыдущую точку фиксации.

Случаи установки точки фиксации:

1. Все обновления, совершенные программой с тех пор, как установлена предыдущая точка фиксации, выполнены, т.е. стали постоянными. Во время выполнения все такие обновления могут расцениваться только как пробные (в том смысле, что они могут быть не выполнены, например прокручены назад). Гарантируется, что однажды зафиксированное обновление так и останется зафиксированным (это и есть определение понятия "зафиксировано").

2. Все позиционирование базы данных утеряно, и все блокировки кортежей реализованы. Позиционирование базы данных здесь означает, что в любое конкретное время программа обычно адресована определенным кортежам. Эта адресуемость в точке фиксации теряется.

Следовательно, система может выполнить откат транзакции как явно – например по команде ПО с которым работает пользователь, так и неявно – для любой программы, которая по какой-либо причине не достигла запланированного завершения операций, входящих в транзакцию.

Из этого видно, что транзакции — это не только логические единицы работы, но также и единицы восстановления при неудачном выполнении операций. При успешном завершении транзакции система гарантирует, что обновления постоянно установлены в базе данных, даже если система потерпит крах в следующий момент. Возможно, что в системе произойдет сбой после успешного выполнения COMMIT, но перед тем, как, обновления будут физически записаны в базу данных (они все еще могут оставаться в буфере оперативной памяти и таким образом могут быть утеряны в момент сбоя системы). Даже если подобное случилось, процедура перезагрузки системы все равно должна устанавливать эти обновления в базу данных, исследуя соответствующие записи в файле регистрации. Из этого следует, что файл регистрации должен быть физически записан перед завершением операции COMMIT. Это важное правило ведения файла регистрации известно как протокол предварительной записи в журнал (т.е. запись об операции осуществляется перед ее выполнением). Таким образом, процедура перезагрузки сможет восстановить любые успешно завершенные транзакции, хотя их обновления не были записаны физически до аварийного отказа системы. Следовательно, как указывалось ранее, транзакция действительно является единицей восстановления.

 

Свойства АСИД.

Из предыдущих разделов следует, что транзакции обладают четырьмя важными свойствами: атомарность, согласованность, изоляция и долговечность (назовем это свойствами АСИД).

1. Атомарность. Транзакции атомарны (выполняется все или ничего).

2. Согласованность. Транзакции защищают базу данных согласованно. Это означает, что транзакции переводят одно согласованное состояние базы данных в другое без обязательной поддержки согласованности во всех промежуточных точках.

3. Изоляция. Транзакции отделены одна от другой. Это означает, что, если даже будет запущено множество конкурирующих друг с другом транзакций, любое обновление определенной транзакции будет скрыто от остальных до тех пор, пока эта транзакция выполняется. Другими словами, для любых двух отдаленных транзакций Т1 и Т2 справедливо следующее утверждение: Т1 сможет увидеть обновление Т2 только после выполнения Т2, а Т2 сможет увидеть обновление Т1 только после выполнения Т1.

4. Долговечность. Когда транзакция выполнена, ее обновления сохраняются, даже если в следующий момент произойдет сбой системы.

 

Дата: 2019-07-30, просмотров: 170.