Интегралы, зависящие от параметра.
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Рассматривая интеграл Коши, видим, что подинтегральная функция зависит от 2-х комплексных переменных : переменной интегрирования z и Z0. Таким образом интеграл Коши может быть рассмотрен как интеграл, зависящий от параметра, в качестве которого выбираем точку Z0.

Пусть задана функция двух комплексных переменных j (Z, z ), причем Z= x + iy в точке, принадлежащей некоторой комплексной плоскости G. z= x+ ih Î С. (С - граница G).

Взаимное расположение области и кривой произвольно. Пусть функция j (Z, z ) удовлетворяет условиям : 1) Функция для всех значений z Î С является аналитической в области G. 2) Функция j (Z, z ) и ее производная ¶j/¶Z являются непрерывными функциями по совокупности переменных Z и z при произвольном изменении области G и переменных на кривой С. Очевидно, что при сделанных предположениях :


Интеграл существует и является функцией комплексной переменной. Справедлива формула :


(2)

Эта формула устанавливает возможность вычисления производной от исходного интеграла путем дифференцирования подинтегральной функции по параметру.

ТЕОРЕМА. Пусть f(Z) является аналитической функцией в области G и непрерывной в области G (G включая граничные точки ), тогда во внутренних точках области G существует производная любого порядка от функции f(Z) причем для ее вычисления имеет место формула :

(3)

С помощью формулы (3) можно получить производную любого порядка от аналитической функции f (Z) в любой точке Z области ее аналитичности. Для доказательства этой теоремы используется формула (2) и соответственные рассуждения, которые привели к ее выводу.

ТЕОРЕМА МОРЕРА. Пусть f(Z) непрерывна в односвязной области G и интеграл от этой функции по любому замкнутому контуру, целиком принадлежащему G равен 0. Тогда функция f (Z) является аналитической функцией в области G. Эта теорема обобщается и на случай многосвязной области G.


Разложение функции комплексного переменного в ряды.

Если функция f(x, y) определена и непрерывна вместе с частными производными (до n-го порядка ), то существует разложение этой функции в ряд Тейлора :

Итак, если задана функция f (z) комплексного переменного, причем f (z) непрерывная вместе с производными до n-го порядка, то:

(2) – разложение в ряд Тейлора.

Формула (2) записана для всех Z принадлежащих некоторому кругу | Z-Z0 |<R, где R – радиус сходимости ряда (2).

Функция f (z), которая может быть представлена в виде ряда (2) является аналитической функцией. Неаналитическая функция в ряд Тейлора не раскладывается.

(3)

(4)

(5)

Причем | Z | < R, R ® ¥ .

Формулы ЭЙЛЕРА.

Применим разложение (3) положив, что Z = ix и Z= - ix;

(6)

Аналогично взяв Z = - ix получим :

(7)

Из (6) и (7) можно выразить т.н. формулы Эйлера :

(8)

В общем случае :

(9)

Известно, что :

(10)

Тогда из (9) и (10) вытекает связь между тригонометрическими и гиперболическими косинусами и синусами:

Ряд ЛОРАНА.

Пусть функция f(z) является аналитической функцией в некотором круге радиусом R, тогда ее можно разложить в ряд Тейлора (2). Получим тот же ряд другим путем.

ТЕОРЕМА 1.

Однозначная функция f(Z) аналитическая в круге радиусом |Z-Z0| < R раскладывается в сходящийся к ней степенной ряд по степеням Z-Z0.

Опишем в круге радиусом R окружность r, принадлежащую кругу с радиусом R.

Возьмем в круге радиуса r точку Z, а на границе области точку z , тогда f(z) будет аналитична внутри круга с радиусом r и на его границе. Выполняется условие для существования интеграла Коши :

(13)

(11)

Поскольку

, то выражение можно представить как сумму бесконечно убывающей геометрической прогрессии со знаменателем , т.е. :

(12)

Представим равномерно сходящимся рядом в круге радиуса r, умножая (12) на 1/(2pi) и интегрируя по L при фиксированном Z, получим : слева интеграл (13) который равен f (Z), а справа будет сумма интегралов :

Обозначая , получим : (14)

Это разложение функции f (Z) в круге R в ряд Тейлора. Сравнивая (14) с рядом (2) находим, что (15)

ТЕОРЕМА 2.

Если однозначная функция f(Z) аналитична вне круга с радиусом r с центром в точке Z0 для всех Z выполняется неравенство r < |Z-Z0 |, то она представляется рядом :

(16)

где h - ориентированная против часовой стрелки окружность радиуса r (сколь угодно большое число). Если обозначить (17) , получим :

(18)

ТЕОРЕМА 3.

Если однозначная функция f(Z) аналитическая в кольце Z< |Z-Z0 |<R, где 0£ Z<R<¥ , то она раскладывается в сходящийся степенной ряд :

(19)

f1 и f2 можно представить в виде двух рядов :

(20)

(21)

Ряд (19) – ряд Лорана, при этом ряд (20) сходится в круге радиуса R, ряд (21) сходится вне круга радиуса R функции f2(Z). Общая область сходимости ряда – кольцо между r и R.

f1(Z) – правильная часть.

f2(Z) – главная часть ряда Лорана.

Ряд Тейлора – частный случай ряда Лорана при отсутствии главной его части.

Дата: 2019-07-30, просмотров: 209.