Ускорение Кориолиса, его величина направление и физический смысл
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Рассмотрим ускорение Кориолиса, определяемое равенством (3.7). Если подвижная система движется относительно неподвижной поступательно (т.е. переносное движение поступательное), то единичные орты будут постоянны и по модулю и по направлению и их производные по времени будут равны нулю, следовательно и ускорение Кориолиса равно нулю.

Теорема о сложении ускорений при поступательном переносном движении будет выражаться равенством:

 

 (3.9)

 

Рассмотрим переносное вращательное движение. Пусть подвижная система вращается вокруг оси О3 с угловой скоростью (рис. 3.2). единичные орты  можно рассматривать как радиус-векторы точек А, В и С соответственно. А производные по времени от радиус-векторов точек дают скорости точек.

 

 

 

Следовательно:

 

; ;  (а)

 

с другой стороны, скорости точек А, В и С мы можем найти как во вращательном движении по формуле (2.11):

 

; ;  (б)

 

сравнивая (а) и (б) находим, что:

 

; ; ; (в)

 

Подставим эти значения в формулу (3.7)

 

 

Таким образом ускорение Кориолиса равно удвоенному векторному произведению вектора угловой скорости переносного движения на вектор относительной скорости.

 

 (3.10)

 

Его величина


 (3.11)

 

 

 


В соответствии с правилом векторного произведения ускорения Кориолиса направлено перпендикулярно плоскости, в которой лежат векторы  и , в ту сторону, чтобы, глядя навстречу ему, мы видим поворот вектора  к вектору  на меньший угол происходящим против часовой стрелки.

Другое правило: чтобы найти направление ускорения Кориолиса, надо вектор спроецировать на плоскость, перпендикулярно оси переносного вращения, и полученную проекцию повернуть на 90о в сторону вращения. Эти и будет направление вектора .

Физический смысл ускорения Кориолиса выясним на таком примере. Пусть круглая платформа вращается с постоянной угловой скоростью , а по радиусу платформы двигается точка М с постоянной относительной скоростью V ч (рис. 3.3). В некоторый момент точка занимает положение Мо, а через промежуток времени  положение М1. При этом произошло изменение относительной скорости за счет переносного движения (изменилось направление вектора ) и изменение переносной скорости за счет относительного движения (изменилась величина  в результате удаления точки от оси вращения). Эти два изменения и характеризуются ускорением Кориолиса.

Таким образом, ускорение Кориолиса характеризует изменение относительной скорости в результате переносного движения и изменение переносной скорости в результате относительного движения.

В общем случае движения формулы (3.8) удобнее использовать в таком виде:

 

 (3.12)

 

Задача кинематики плоского движения твердого тела - найти характеристики движения самого тела и отдельных его точек. В данном задании к таким характеристикам относятся векторы угловой скорости и углового ускорения тела.

 

Рис. 1

 

Основные формулы кинематики плоского движения твердого тела - векторные формулы, связывающие соответственно скорости и ускорения двух произвольных точек плоской фигуры, например, точек А и В (рис. 1)

 

B = A + BA = A +  ´ ; (1)

B = A +  +  = A +  × (  ´ ) +  × ; (2)


где , , - векторы угловой скорости и углового ускорения вращения плоской фигуры вокруг любой оси, например Az' перпендикулярной плоскости движения Oxy относительно системы координат Ax'y'z', оси которой параллельны осям неподвижной системы координат Оxyz.На рис.1 оси Оz. и Аz' не изображены, так как считается, что они перпендикулярны к плоскости рисунка и направлены на наблюдателя, а плоскости Охy и Аx'y' совпадают с плоскостью рисунка.

Левые части выражений

 

BA =  ´ ;  =  × (  ´ ) =  × BA;  =  × ;

 

являются соответственно векторами скорости, нормального и касательного ускорения точки В относительно системы координат Ax'y'z' при вращении отрезка АВ в плоскости рисунка вокруг точки A, называемой в таком случае полюсом, с угловой скоростью  и угловым ускорением . Индексы n и t , в выражениях  и указывают, что эти векторы направлены соответственно по внутренней нормали и касательной в точке B к окружности радиуса r = AB с центром в точке А. Модули упомянутых векторов находятся по формулам

 

½ BA½ =  ´ AB; ½ ½ =  =  ´ AB; ½ ½ =  ´ AB; (3)

 

Векторы BA, ,  лежат в плоскости движения плоской фигуры тела, причем ненулевые векторы BA,  перпендикулярны отрезку AB, а ненулевой вектор  направлен от точки В к точке А . Таким образом, для этих векторов всегда известны линии действия.

Поскольку модуль ускорения может быть вычислен по формуле (3) через угловую скорость тела , обычно известную к этапу нахождения ускорений, целесообразно в формуле (2) вектор  записывать вслед за известным вектором А, т.е. перед вектором .

Векторы  и  параллельны оси Оz и поэтому полностью определяются своими проекциями на эту ось

Модуль проекции равен модулю вектора ; , а знак проекции указывает на направление вектора. Например, если проекции векторов положительны ( , то векторы  направлены так же, как и , или ось Oz. Таким образом, при плоском движении тела задача нахождения векторов  сводится к задаче отыскания их проекций на ось Oz или Az'.

Если  (рад) - угол между осью Ax' (Ох) и вектором  (рис. 1) и за положительное направление отсчета угла  для выбранной системы координат принято направление против хода часовой стрелки, то

 

 рад/с;  = = рад/с. (4)

 

О направлении векторов  и  судят по круговым стрелкам  и  согласно правилу: "круговая стрелка, направленная против хода стрелки часов, соответствует вектору, направленному так же, как ось Oz".

Из формул, использующих понятие МЦС (точка Р) на рис.2,

 

 ´ ; B = ; ;

; , (5)

 

следует, что в данный момент времени распределение скоростей точек тела при плоском движении таково, как если бы тело вращалось вокруг оси Рz с угловой скоростью .

 


 

 

Если отсчитывать угол 90 от направления вектора скорости точки A к направлению АР от этой точки до МЦС, то направление отсчета угла совпадает с направлением круговой стрелки . Этот факт можно использовать для определения направления вектора .

Из формул, использующих понятие МЦУ (точка Q на рис. 3),


; ; (6)

,

 

следует, что в данный момент времени распределение ускорений точек тела при плоском движении таково, как если бы тело вращалось вокруг оси Qz с угловой скоростью  и угловым ускорением .

Угол  отсчитывается от вектора ускорения какой-либо точки в направлении круговой стрелки . При отыскании положения МЦУ по ускорениям двух точек, например по  и , под углом  к соответствующим ускорениям проводят лучи AQ и BQ. Точка пересечения лучей (точка Q) является МЦУ плоской фигуры в данный момент времени.

Направления векторов  и  помимо формул (4) могут быть найдены из отдельных векторных формул

 

; ; . (7)

 

Рис. 4

 

Чтобы избежать анализа расположения трех взаимно перпендикулярных векторов формул (7) при известных , ,  направления  и  находят аналогично случаю вращательного движения тела вокруг неподвижной оси (рис. 4).

 

Рис. 5

 

Кинематика плоского движения

катка радиуса R. при отсутствии скольжения по направляющей (в общем случае криволинейной), имеет некоторые особенности вследствие того, что мгновенный центр скоростей катка (точка Р ) совпадает с точкой окружности касающейся направляющей (рис. 5). Поэтому при движении катка расстояние от его центра (точки А) до МЦС является неизменным во времени и равным R.

 

AP(t) = const = R (8)

 

Свойство неизменности расстояния АР позволяет установить дополнительные соотношения, удобные для расчетов кинематических характеристик катка. Представим вектор скорости точки А с помощью:

а) формулы естественного способа задания движения точки

, где  - единичный вектор естественного трехгранника, касательный в точке A к кривой ее движения; SA - криволинейная координата точки;

б) формулы (7) плоского движения тела


,

;

 

- орт оси Оz, перпендикулярной плоскости движения катка Qxy; j - угол, задающий направление какого-либо отрезка плоской фигуры катка. Ввиду произвольности выбора такого отрезка, обычно собственно отрезок, не указывают на рисунках, а изображают лишь круговую стрелку положительного направления отсчета угла j, называя его углом поворота катка.







Дата: 2019-07-30, просмотров: 177.