Групповой выбор. Правила «статистической» техники безопасности
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Пусть имеется группа лиц, имеющих право принимать участие в коллективном принятии решений. Предположим, что эта группа рассматривает некоторый набор альтернатив, и каждый член группы осуществляет свой выбор. Ставится задача о выработке решения, которое определенным образом согласует индивидуальные выборы и в каком-то смысле выражает "общее мнение" группы, т.е. принимается за групповой выбор.

Естественно, различным принципам согласования индивидуальных решений будут соответствовать различные групповые решения.

Правила согласования индивидуальных решений при групповом выборе называются правилами голосования. Наиболее распространенным является "правило большинства", при котором за групповое решение принимается альтернатива, получившая наибольшее число голосов.

Необходимо понимать, что такое решение отражает лишь распространенность различных точек зрения в группе, а не действительно оптимальный вариант, за который вообще никто может и не проголосовать. "Истина не определяется путем голосования", самой распространенной точкой зрения может быть и заблуждение.

Кроме того, существуют так называемые "парадоксы голосования", наиболее известный из которых парадокс Эрроу.

Эти парадоксы могут привести, и иногда действительно приводят, к очень неприятным особенностям процедуры голосования: например бывают случаи, когда группа вообще не может принять единственного решения (нет кворума или каждый голосует за свой уникальный вариант, и т.д.), а иногда (при многоступенчатом голосовании) меньшинство может навязать свою волю большинству, как это было на президентских выборах в США "Буш – Гор".

Оставив в стороне человеческий фактор (например, недобросовестный или субъективный отбор данных), можно выделить несколько правил "статистической техники безопасности", связанных с самой природой статистических выводов.

Данные должны иметь действительно случайную природу (обладать статистической устойчивостью), что далеко не всегда имеет место, и очень непросто проверяемо.

Закономерность, выявленная статистически, никогда не бывает абсолютно точной: числовая характеристика всегда оценивается лишь приближенно; вероятность ошибки статистического вывода всегда отлична от нуля (ошибки первого и второго родов).

В структуре любого алгоритма статистической обработки данных заложены априорные предположения о природе данных. Если эти предположения расходятся с тем, что есть на самом деле, выводы получаются совсем не такого качества, которое от них ожидается. Практики же редко проверяют выполнимость "паспортных" ограничений на применимость процедур.

Выявленная статистическая закономерность подлежит содержательной интерпретации. Статистику нельзя обвинять за то, что вполне надежный статистический вывод неверно проинтерпретирован специалистом - пользователем; последний же часто "пеняет на зеркало".

 

40. Достоинства и недостатки оптимизационного подхода

 

Идея оптимальности является центральной идеей кибернетики и прочно вошла в практику проектирования и эксплуатации технических систем. Вместе с тем эта идея требует осторожного к себе отношения, когда мы пытаемся перенести ее в область управления сложными, большими и слабо детерминированными системами, такими, например, как социально-экономические системы.

Для этого заключения имеются достаточно веские основания. Рассмотрим некоторые из них.

1. Оптимальное решение нередко оказывается неустойчивым: т.е. незначительные изменения в условиях задачи, исходных данных или ограничениях могут привести к выбору существенно отличающихся альтернатив.

2. Оптимизационные модели разработаны лишь для узких классов достаточно простых задач, которые не всегда адекватно и системно отражают реальные объекты управления. Чаще всего оптимизационные методы позволяют оптимизировать лишь достаточно простые и хорошо формально описанные подсистемы некоторых больших и сложных систем, т.е. позволяют осуществить лишь локальную оптимизацию. Однако, если каждая подсистема некоторой большой системы будет работать оптимально, то это еще совершенно не означает, что оптимально будет работать и система в целом. То есть оптимизация подсистемы совсем не обязательно приводит к такому ее поведению, которое от нее требуется при оптимизации системы в целом. Более того, иногда локальная оптимизация может привести к негативным последствиям для системы в целом.

3. Часто максимизация критерия оптимизации согласно некоторой математической модели считается целью оптимизации, однако в действительностью целью является оптимизация объекта управления. Критерии оптимизации и математические модели всегда связаны с целью лишь косвенно, т.е. более или менее адекватно, но всегда приближенно.

Итак, идею оптимальности, чрезвычайно плодотворную для систем, поддающихся адекватной математической формализации, нельзя перенести на сложные системы. Конечно, математические модели, которые удается иногда предложить для таких систем, можно оптимизировать. Однако всегда следует учитывать сильную упрощенность этих моделей, а также то, что степень их адекватности фактически неизвестна. Поэтому не известно, какое чисто практическое значение имеет эта оптимизация. Высокая практичность оптимизации в технических системах не должна порождать иллюзий, что она будет настолько же эффективна при оптимизации сложных систем. Содержательное математическое моделирование сложных систем является весьма затруднительным, приблизительным и неточным. Чем сложнее система, тем осторожнее следует относится к идее ее оптимизации.

Поэтому, при разработке методов управления сложными, большими слабо детерминированными системами, основным является не оптимальность выбранного подхода с формальной математической точки зрения, а его адекватность поставленной цели и самому характеру объекта управления.

 

41. Этапы, процедуры и результат использования аналитического метода

 

Аналитический метод - это общий термин, означающий совокупность частных методов изучения экономики, включая анализ и синтез, абстрагирование, допущение "при прочих равных условиях", индукцию и дедукцию, единство логического и исторического, математические и статистические методы.

Суть аналитического метода сводится к использованию нескольких взаимосвязанных этапов. На первом этапе осуществляется подготовка к аналитической обработке информации, которая включает в себя:

1) определение ключевого параметра, относительно которого производится оценка конкретного направления деятельности (например, объем продаж, объем прибыли, рентабельность и т.д.);

2) отбор факторов, которые влияют на деятельность (например, уровень инфляции, политическая стабильность, степень выполнения договоров основными поставщиками предприятия и т.д.);

3) расчет значений ключевого параметра на всех этапах процесса (НИОКР, внедрение в производство, полное производство, отмирание данного направления деятельности).

На втором этапе строятся диаграммы зависимости выбранных результирующих показателей от величины исходных параметров. Сопоставляя между собой полученные диаграммы, можно выделить те основные показатели, которые в наибольшей степени влияют на данный вид (или группу видов) деятельности.

На третьем этапе определяются критические значения ключевых параметров. Наиболее просто при этом может быть рассчитана критическая точка производства или зона безубыточности, которая показывает минимально допустимый объем продаж для покрытия издержек фирмы.

Во время четвертого этапа анализируются на основании полученных критических значений ключевых параметров и факторов, влияющих на них, возможные пути повышения эффективности и стабильности работы фирмы, а следовательно, и пути снижения степени риска, которая определяется одним из предыдущих методов.

Таким образом, преимуществом аналитического метода является то, что он сочетает в себе как возможность пофакторного анализа параметров, влияющих на риск так и выявление возможных путец снижения его степени посредством влияния на них.

 

Дата: 2019-07-31, просмотров: 230.