Наиболее перспективными космическими системами, служащими для решения геодезических задач, являются системы глобального определения местоположения ГЛОНАСС (РФ), GPS (США) и Galileo (европейская система). Эти системы являются исключительно точным инструментом для решения прикладных задач геодезии, землепользования и кадастра.
Они предназначены для высокоточного определения трех координат места, составляющих вектора скорости и времени различных подвижных объектов.
Основой системы GPS являются навигационные спутники, движущиеся вокруг Земли по 6 круговым орбитальным траекториям (по 4 спутника в каждой), на высоте 20180 км. Спутники GPS обращаются вокруг Земли за 12 часов, их вес на орбите составляет около 840 кг, размеры – 1.52 м. в ширину и 5.33 м. в длину, включая солнечные панели, вырабатывающие мощность 800 Ватт. 24 спутника обеспечивают 100 % работоспособность системы навигации GPS в любой точке земного шара. Максимальное возможное число одновременно работающих спутников в системе NAVSTAR ограничено числом 37. В настоящий момент на орбите находится 32 спутника, 24 основных и 8 резервных на случай сбоев.
Глобальная навигационная спутниковая система (ГЛОНАСС, GLONASS) — советская и российская спутниковая система навигации, разработана по заказу Министерства обороны СССР. Одна из двух функционирующих на сегодня систем глобальной спутниковой навигации. Основой системы должны являться 24 спутника, движущихся над поверхностью Земли в трёх орбитальных плоскостях с наклоном орбитальных плоскостей 64,8° и высотой 19100 км. Принцип измерения аналогичен американской системе навигации NAVSTAR GPS. Основное отличие от системы GPS в том, что спутники ГЛОНАСС в своем орбитальном движении не имеют резонанса (синхронности) с вращением Земли, что обеспечивает им большую стабильность. Таким образом, группировка КАГЛОНАСС не требует дополнительных корректировок в течение всего срока активного существования. Тем не менее, срок службы спутников ГЛОНАСС заметно короче.
Электронный тахеометр объединяет теодолит, светодальномер и счетное устройство, позволяет выполнять угловые и линейные измерения и осуществлять совместную обработку результатов этих измерений.
Тахеометры, в которых все устройства (угломерные, дальномерные, зрительная труба, клавиатура, процессор) объединены в один механизм, называются интегрированными тахеометрами.
Тахеометры, которые состоят из отдельно сконструированного теодолита (электронного или оптического) и светодальномера, называют модульными тахеометрами.
В электронных тахеометрах расстояния измеряются по разности фаз испускаемого и отраженного луча (фазовый метод), иногда (в некоторых современных моделях) по времени прохождения луча лазера до отражателя и обратно (импульсный метод). Точность измерения зависит от технических возможностей модели тахеометра, а также от многих внешних параметров: температуры воздуха, давления, влажности и т. п. Диапазон измерения расстояний зависит также от режима работы тахеометра (отражательный или безотражательный). Дальность измерений в безотражательном режиме напрямую зависит от отражающих свойств поверхности, на которую производится измерение. Дальность измерений на светлую гладкую поверхность (штукатурка, кафельная плитка и пр.) в несколько раз превышает максимально возможное расстояние, измеренное на темную поверхность. Максимальная дальность линейных измерений: для режима с отражателем (призмой) – до пяти километров (при нескольких призмах еще дальше); для безотражательного режима – до одного километра. Модели тахеометров, которые имеют безотражательный режим могут измерять расстояния практически до любой поверхности, однако следует с осторожностью относиться к результатам измерений, проводимым сквозь ветки, листья, потому как сигнал может отразится от промежуточного предмета.
Существуют модели тахеометров, обладающих дальномером, совмещенным с системой фокусировки зрительной трубы. Преимущество таких приборов заключается в том, что измерение расстояний производится именно на тот объект, по которому в данный момент выставлена зрительная труба прибора.
Для выполнения съёмки электронный тахеометр устанавливают на станции и настраивают его в соответствии с условиями измерений. На пикетах ставят специальные вешки с отражателями, при наведении на которые автоматически определяются расстояние, горизонтальные и вертикальные углы. Если тахеометр имеет безотражательный режим, то можно производить измерения на реечные точки, в которых нет возможности установить вешку с отражателем. Счетное устройство тахеометра во время измерений автоматически вычисляет горизонтальное проложение, приращения координат и превышение h. Все данные, полученные в ходе измерений, сохраняются в специальном запоминающем устройстве (накопителе информации). Они могут быть переданы с помощью интерфейсного кабеля на компьютер, где с использованием специальной программы выполняется окончательная обработка результатов измерений для построения цифровой модели местности или топографического плана. Совместное использование электронного тахеометра с компьютером позволяет полностью автоматизировать процесс построения модели местности.
В настоящее время наиболее широкое распространение получили электронные тахеометры зарубежных фирм Sokkia (рис. 19.2), Topcon, Nicon, Pentax, Leica, Trimble. Они имеют встроенное программное обеспечение для производства практически всего спектра геодезических работ: развитие геодезических сетей; съемка и вынос в натуру; решение задач координатной геометрии (прямая и обратная геодезическая задача, расчет площадей, вычисление засечек). Угловая точность у таких приборов может быть от 1" до 5" в зависимости от класса точности.
Рис. 19.2. Электронный тахеометр Sokkia SET 530RK3
К новейшим электронным тахеометрам относятся роботизированные тахеометры, оснащенные сервоприводом. Эти приборы могут самостоятельно наводиться на специальный активный отражатель и производить измерения. В дополнение прибор с сервоприводом может оснащаться специальной системой управления по радио, при этом съемку может производить только один человек, находясь непосредственно на измеряемой точке. Подобная схема съемки увеличивает производительность проведения съемочных работ примерно на 80 %. Роботизированные системы могут быть использованы для слежения за деформациями объектов, съемки движущихся объектов и т. д.
Дата: 2019-07-30, просмотров: 220.