Разработка несущей конструкции
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

В связи с узкоспециализированным назначением радиопередающего устройства, к конструкции блока предварительного усилителя предъявляется особое значение. Размеры корпуса блока предварительного усилителя должны быть соответствовать габаритным размерам места установки блока, т.е. его ширина, длинна и высота не должны превышать эти размеры.

В условиях эксплуатации радиопередающего комплекса предусмотрены быстрая поблочная разборка и транспортировка всего комплекса. Но с учетом того, что блок эксплуатируется в стационарных условиях, то нет необходимости для его дополнительного крепления и амортизации.

Обычно масса несущей конструкции радиоэлектронной аппаратуры составляет примерно 70% от общей массы аппаратуры. Поэтому задача уменьшения массы базовой несущей конструкции является весьма актуальной. Габаритные размеры и масса блока во многом зависит от применяемой в нем системы охлаждения. Для уменьшения габаритных размеров блока в качестве системы охлаждения для элементов, работающих в критических режимах, применяем теплоотвод потоком воздуха, нагнетаемого вентиляторами. Для более эффективного охлаждения блока кожух выполнен с перфорацией. Внутренние ячейки блока выполнены по многомодульному типу. Каждый модуль может быть легко заменен в случае его выхода из строя.

Рассматриваемый блок должен иметь облегченную конструкцию, поэтому в качестве материала несущей конструкции выбираем сплавы алюминия, а токопроводящие элементы выполним из меди. Для антикоррозионной стойкости все платы покрываются лаком ЭП–730. Для обеспечения внешней эстетичности, а также для антикоррозионной стойкости наружные поверхности покрываются эмалью.

Конструкция предварительного усилителя мощности состоит из радиатора (поз. 33) с установленными на него передней (поз. 2) и задней (поз. 31) панелями, также на радиатор на втулки (поз. 32) устанавливаются платы печатные с усилительными каскадами. Снизу на радиатор установлена направляющая (поз.27), для предварительного позиционирования блока внутри БУМ. Справа на радиатор на втулки (поз.40) устанавливается блок управления усилителя предварительного.

На передней панели для контроля режимов работы блока предварительного усилителя мощности устанавливается розетка (поз.101) типа РП–15ГВ. Также для регулировки параметров блока управления предварительного усилителя мощности сделаны 3 отверстия. Но с учетом того, что все это используется только при регулировке блока, все эти позиции закрываются фальшпанелью (поз. 25).

На задней панели устанавливаются штыри ловители (поз.39) для более точного позиционирования блока. Для точного вхождения вилки типа РП10–11ЛВ, на ней установлены штыри. Входной и выходной сигнал предварительного усилителя мощности поступает через штекеры ВЧ входа и ВЧ выхода установленных на задней панели (поз.11).

Габаритные размеры блока 320´160´30 мм. Масса 2.8 кг.

 

Тепловой расчет

 

В проектируемом блоке требуется отвод тепла от транзисторов усилительных каскадов. Для отвода тепла в конструкции устройства предусмотрены два осевых электровентилятора 1,0 ЭВ–1,4–4. Процесс теплообмена радиоэлектронных аппаратов охлаждаемых продуваемым через них воздухом, носит очень сложных характер и не поддается точному расчету. Тепловой режим аппарата зависит от следующих параметров: формы и размеров кожуха, шасси и радиодеталей, расположения деталей на шасси, мощности отдельных источников тепла и их расположения в аппарате, размеров, формы и расположения устройств для подвода и отвода воздуха, расхода и температуры воздуха, а также условий теплообмена снаружи аппарата.

Расчет радиатора

Перегрев полупроводниковых приборов можно уменьшить, путем увеличения теплоотдающей поверхности, т.е. установкой их на радиатор. Методика расчета приведена в [2].

Исходными данными при проектировании или выборе радиатора являются: предельная температура рабочей области транзистора tp=100°С; мощность рассеиваемая на приборе Р=25Вт; температура окружающей среды t0=35°С; внутреннее тепловое сопротивление прибора между рабочей зоной транзистора и корпусом Rвн=0,425°С/Вт.

– Определим перегрев места крепления прибора с радиатором:

 

 

где Rк – тепловое сопротивление контакта между прибором и радиатором, °С/Вт,

 

,

Sк= 0,42×10-3м2 – площадь контактной поверхности.

°С/Вт

°С

 

– определим в первом приближении средний перегрев основания радиатора:

°С

 

– Выбираем тип радиатора в первом приближении с помощью графиков представленных на рисунке 4.21 [2].

В соответствии с графиком выбираем ребристый радиатор в условиях вынужденного охлаждения.

– определим коэффициент теплоотдачи радиатора по графикам на рисунке 4.25 [2]. В соответствии с графиком aэф=125Вт/м2град

– находим площадь основания радиатора

 

м2

 

– Определим средний перегрев основания радиатора во втором приближении

 

где ; ;

 

aр – коэффициент теплопроводности материала радиатора, Вт/мград;

Sp – толщина основания радиатора, м.

Выберем в качестве материала радиатора алюминий, у которого lр=208 Вт/мград, а толщина основания dр=0,023м.

DtS=0.008м2

 

Из сделанных расчетов можно сделать вывод, что суммарная площадь радиатора всех транзисторов не будет выходить за пределы габаритных размеров блока и мы можем применить данную схему охлаждения транзисторов.



Дата: 2019-07-30, просмотров: 219.