В процессе производства раствора натрия хлорида 0,9% химических превращений не происходит.
Технологическая схема производства
ВР1 Подготовка тары, помещений, оборудования, персонала
| ВР 1.1 :Получение ампул | ||||||
ВР 1.2:Подготовкатары, ампул, флаконов, упаковочного материала и наполнение | |||||||
| |||||||
| |||||||
| ВР 1.3:Получение и подготовка растворителя
| ||||||
| |||||||
| |||||||
| ВР 1.4:Подготовка помещений | ||||||
| |||||||
| ВР 1.5: Подготовка фильтров | ||||||
| |||||||
ТП1 Приготовление раствора | ТП 1.1: Растворение ЛВ | ||||||
| |||||||
| Потери
|
| ТП 1.2: Фильтрование раствора
| ||||
| |||||||
ТП2 Ампулирование раствора |
| ТП 2.1 Заполнение ампул
| |||||
| |||||||
| |||||||
Потери
| ТП 2.2:3апайка ампул
| ||||||
|
| ||||||
ТПЗ Стерилизация |
| ТП 2.1:Стерилизация | |||||
| |||||||
| |||||||
Потери
| ТП 2.2:Проверка герметичности
| ||||||
|
| ||||||
ТП4 Контроль качества |
| ||||||
|
| ||||||
Потери |
| ||||||
|
| ||||||
ТП5 Этикетирование |
| ||||||
|
| ||||||
Потери |
| ||||||
|
| ||||||
УМО Упаковка, маркировка |
| ||||||
Аппаратурная схема производства и спецификация оборудования
1. машина Н.А. Филипина - 1 шт. (калибровка ампул). Производительность - 130 кг трубок в час;
2. установка для мойки и сушки камерного типа - 1 шт. (мойка и сушка дрота);
3. роторный стеклоформирующий автомат ИО-8 1 - шт. (выделка ампул);
4. электрическая печь для отжига ампул тушильного типа - 1 шт.;
5. полуавтомат роторного типа для вскрытия ампул - 1 шт.;
6. аппарат модели АП-30 для пароконденсационной мойки ампул -1 шт. Производительность 27000 ампул в час. Т = 80-9ОoС;
7. колонка фильтровальная - 6 шт. (катионные и анионные);
8. трехкорпусный аквадистиллятор „Финн-аква“ - 1 шт. (для получения воды очищенной). Фильтр ХИИВХИ - 1 шт.;
9. мембранный фильтр „Владипор“ МФА-А №1 - 1 шт.;
10. монтежю для обессоленной воды - 1 шт.;
11. мерник для обессоленное воды - 1 шт.;
12. насос для воды - 1 шт.;
13. сборник для воды очищенной - 1 шт.;
14. душирующее устройство для наружной мойки ампул;
15. реактор фарфоровый с пропеллерной мешалкой - 1 шт.;
16. сборник чистого раствора - 1 шт.;
17. автомат для заполнения и заливки ампул типа 541 - 1 шт.;
18. стерилизатор паровой типа АП-7 - 1 шт.;
19. душирующее устройство для мойки ампул - 1 шт.;
20. ванна для проверки герметичности ампул;
21. установка для объективного контроля инъекционных растворов в ампулах - 1 шт.;
Характеристика сырья, материалов и полупродуктов
Natrii chloridi (ГФ X, ст.240) Натрия хлорид
Описание. Белые кубические кристаллы или белый кристаллический порошок без запаха, соленого вкуса.
Растворимость. Растворим в 3 ч. воды, мало растворим в спирте.
Подлинность. Препарат дает характерные реакции на натрий и на хлориды (ГФ X, стр. 745, 747).
Прозрачность и цветность раствора, кислотность или щелочность, кальций, магний, барий, железо, тяжелые металлы, сульфаты, мышьяк. Препарат должен выдерживать испытания, указанные в статье кKalii chloridumњ.
Калий. Раствор 0,5 г препарата в 5 мл воды не должен давать мути от прибавления раствора виннокаменной кислоты.
Соли аммония. Раствор 0,5 г препарата в 10 мл воды должен выдерживать испытание на соли аммония (не более 0,004% в препарате).
Потеря в весе при высушивании. Около 1 г препарата (точная навеска) сушат при 110° до постоянного веса. Потеря в весе не должна превышать 0.5%.
Количественное определение. Проводят, как указано в статье кKalii chloridumњ. 1 мл 0,1 н раствора нитрата серебра соответствует 0,005844 г NaCl, которого в пересчете на сухое вещество должно быть не менее 99,5%
Хранение. В хорошо укупоренной таре.
№ ФС или ГОСТа | Техническое или торговое название | Параметр | Показатели | Сортност |
ГФ X, ст. 426 | Натрия хлорид | Содержание не менее 99% | по ГФ | |
ФС 42-2620-97 | Вода для инъекций | pH | 5,0–6,8 | по ФС |
ГОСТ 18122-72 | Ампулы | по ГОСТ |
Изложение технологического процесса
Вспомогательные работы (ВР 1)
Получение ампул (ВР 1.1)
Изготовление дрота. Дрот производится из жидкой стеклянной массы ив линиях АТГ 8-50. Длина трубок 1500±50 мм, отрезка производится механико-термическим способом.
Калибровка дрота
Диаметр трубок - от 8.00 до 27,00 мм. Калибровка производится по наружному диаметру в двух сечениях на расстоянии 350 мм от середины трубки на машине Н.А. Филипина. На вертикальной раме машины укреплено пять калибров по 2 каждого размера на расстоянии между ними 700 мм, щели которых увеличиваются снизу вверх на 0,25 мм. С помощью захватов трубки ступенчато подаются снизу к первым калибрам, если размеры позволяют, трубка проходит их и скатывается в накопитель. Если диаметр трубки больше щели, трубка поднимается выше на следующие калибры с больших зазором.
Производительность – 30 кг трубок в час.
Мойка и сушка дрота
Производится в установке для мойки и сушки трубок камерного типа.
250-350 кг трубок загружается в контейнер в вертикальном положении, и он закатывается внутрь камеры с помощью пневмопривода.
Двери камеры герметизируются и включается система автоматического управления режима мойки. Камера с трубками заполняется водопроводной водой, жидкость нагревается до кипения. Замачивание продолжается в течение 1 часа при температуре 60oС. Затем проводится барботаж подачей пара в течение 40 минут. После этого жидкость из камеры сливается. В душирующее устройство подается под давлением деминерализованная вода. С помощью пневмоцилиндров форсунки душирующего устройства перемещаются в горизонтальной плоскости, душирование проводится в течение 30-60 минут. Жидкость из камеры сливается.
Сушка производится горячим профильтрованным воздухом с температурой 60oС - 15-20 минут.
Качество мойки проверяется визуально путем осмотра внутренней поверхности при освещении пучка трубок с противоположной стороны. Поверхность должна быть ровная без заметных механических включений.
Выделка ампул
Ампулы изготавливаются на роторных стеклоформующих автоматах ИО-8. Они имеют пережим, номинальный объем ампул - I мл.
Трубки загружаются в накопительные барабаны, предназначенные для каждой из 16 пар верхних и нижних патронов, и проходят 6 позиций:
1. трубки подаются из накопительного барабана внутрь патрона. С помощью ограничительного упора устанавливается их длина. Верхний патрон сжимает трубку, оставляя ее на постоянной высоте на всех позициях;
2. к вращающейся трубке подходят горелки с широким пламенем и нагревают их до размягчения стекла. В это же время нижний патрон, двигаясь по копиру, поднимается вверх и зажимает нижнюю часть трубки;
3. нижний патрон, продолжая движения по копиру, опускается вниз к размягченное стекло трубки выпячивается в капилляр;
4. к верхней части капилляра подходит горелка с острым пламенем. На этой позиции происходит отрезка капилляра;
5. одновременно с отрубкой капилляра происходит запайке донышка следующей ампулы;
6. нижний патрон освобождает зажимы и полученная ампула опускается на наклонный лоток. Трубка с запаянным донышком подходит к ограничительному упору 1-й позиции и цикл работы автомата повторяется. В момент освобождения зажимов нижнего патрона под действием силы тяжести ампулы в месте отпайки вытягивается очень тонкий капилляр, который при одновременном падении и вращении ампулы отламывается. За счет этого нарушается герметичность ампул, и они получается без вакуумными. Оптимальная температура пламени горелок – 1250-1350oС.
Подготовка тары, ампул, флаконов, укупорочного материала (ВР 1.2)
Отжиг ампул
Отжиг проводится в электрических печах тушильного типа. Ампулы помещают в лотки капиллярами вверх и подают на стол загрузки. С помощью цепного конвейера они продвигаются через туннель, проходя поочередно камеры нагрева, выдержки и охлаждения. В камере нагрева ампулы быстро нагреваются до температуры 600oС и поступают в камеру выдержки, которую проходят за 7–10 минут при той же температуре. За это время происходит снятие остаточных напряжений в стекле, сгорают органические загрязнители, а стеклянная пыль вплавляется в стенки ампулы. Затем лотки с ампулами поступают в камеру охлаждения с фильтрованным воздухом. В первой зоне этой камеры происходит медленное, постепенное охлаждение нагретым воздухом о температурой около 200oС в течение 30 минут. Такие условия обеспечивают равномерное охлаждение наружных и внутренних стенок ампул. Во второй зоне камеры ампулы охлаждаются воздухом до 60oС за 5 минут и лоток подходит к столу выгрузки.
Качество отжига проверяется поляризационно-оптическим методом - измеряется разность хода лучей на полярископе - поляриметр ПКС-250 по ГОСТ 732Э.74. Не допускается остаточное напряжение, создающее удельную разность хода лучей более 8 м
Вскрытие капилляров
Операция проводится так, чтобы ампулы получались одинаковой высоты. Концы капилляров на месте вскрытия должны иметь ровные и гладкие края.
Вскрытие ампул проводят на полуавтоматах роторного типа. В качестве транспортера применяется ротор с гнездами для ампул, они перемещаются к вращающемуся дисковому ножу. Возле ножа ампула начинает вращаться за счет трения ее о неподвижную пластину, укрепленную на корпусе. Дисковый нож делает на капилляре круговой надрез, на месте которого происходит вскрытие за счет термоудара при нагревании горелкой. После вскрытия капилляр оплавляется горелкой, и ампула поступает в бункер для набора в кассеты
Наружная мойка ампул
Кассеты с ампулами помещают в ванну на подставку и душируют деминерализованной водой с температурой 60oС. Во время мойки кассета с ампулами совершает вращательное движение под давлением струй воды, что способствует одинаковой очистке всей наружной поверхности.
Внутренняя мойка ампулы
Осуществляется пароконденсационным способом, автоматически. Кассете с ампулами, капиллярами вниз, помещается в рабочую емкость, крышка закрывается, и в аппарате проводится продувка паром через холодильник и рабочую емкость в течение 6 секунд. Происходит вытеснение воздуха из аппарата и прогрев его стенок. В распылитель подается холодная вода с температурой 8-10oС под давлением 147038,75 Па. В результате контакта пара с капельками холодной воды из распылителя в холодильнике и рабочей емкости создается вакуум. Для удаления воздуха из ампул разряжение повторяется. Рабочая емкость заполняется деминерализованной водой с температурой 80-90oС через трубопровод до заданного уровня, который обеспечивает полное погружение капилляров ампул в воду. В аппарат чрез холодильник подается пар в течение 4 секунд, а за тем в распылитель – холодная вода. Разрежение, создающееся при этом, гасится паром под давлением. Под действием гидравлического удара, связанного с резким перепадом давления, вода в виде турбулентного потока устремляется внутрь ампулы. При возникающем разряжении вода бурно закипает. Для удаления воды из ампул создается вакуум конденсацией пара. В одной и той же порции моющей воды может совершиться до 9 гидроударов. Из рабочей емкости вода с загрязнениями удаляется через клапан подачей пара под давлением. После этого вытесняется вода из ампул путем создания вакуума. В рабочую емкость наливается новая порция воды (80-90oС); циклы повторяются до полной очистки ампул. В последнем цикле проводится ополаскивание водой очищенной с четырьмя гидроударами. Затем в аппарате создается вакуум без подачи воды в рабочую емкость. Из ампул окончательно удаляется вода, происходит их сушка.
Получение и подготовка растворителя (ВР 1.3)
Получение воды деминерализованной
Деминерализация воды проводится с помощью ионного обмена, основанного на использовании ионитов. Катионит в H-форме обменивает все катионы, содержащиеся в воде, анионит в OH-форме – все анионы.
В качестве катионита используется сильнокислотный сульфокатионит КУ-2, анионита – сильноосновный АВ-171. Ионообменная установка состоит из 3 пар катионитных и анионитных колонок. Водопроводная вода поступает в катионитную колонку, проходит через слой катионита, затем анионита, подается на фильтр с размером пор не более 5-10 мкм (для удаления частиц разрушения ионообменных смол), нагревается в теплообменнике до температуры 80-90oС.
Регенерация ионитов
Перед регенерацией иониты взрыхляют обратным током водопроводной воды. Катио-ниты регенерируют в несколько приемов. 1, 0,7 и 4% растворами кислоты серной. Перед сливом в канализацию кислоту из колонки нейтрализуют мраморной крошкой. Аниониты восстанавливаются в 3 приема: 2,6, 1,6 и 0,8% раствором натрия гидроксида.
После обработки растворами реагентов колонки промывают водой до заданного значения pH.
Получение воды для инъекций
Вода для инъекционных препаратов получается методом перегонки деминерализованной воды в трехкорпусном аквадистилляторе „Финн-аква“. Исходная вода деминерализованная подается через регулятор давления в конденсор-холодильник, проходит теплообменники камер предварительного нагрева - III, II, I корпусов, нагревается и поступает в зону испарения, в которой размещены системы трубок, обогреваемых изнутри греющим паром. Нагретая вода с помощью распределительного устройства направляется на наружную поверхность обогреваемых трубок в виде пленки, стекает по ним вниз и нагревается до кипения.
В испарителе создается интенсивный поток пара, специальными направляющими ему задается спиралеобразное вращательное движение снизу вверх с большой скоростью – 20-60 м/с центробежная сила, возникающая при этом, прижимает капли к стенкам, и они стекают в нижнюю часть корпуса. Очищенный вторичный пар направляется в камеру предварительного нагрева и трубки нагревателя II корпуса. I корпус обогревается техническим паром, который поступает в камеру предварительного нагрева, затем в трубки испарителя к выводится через парозапорное устройство в линию технического конденсата. Избыток питающей воды через трубку из нижней части I и II корпусов подается в испарители, где вода также в виде пленки стекает по наружной поверхности (обогреваемых внутри трубок) по трубе в конденсатор-холодильник в качестве целевого дистиллята. В III корпус питающая вода поступает из нижней части корпуса II. Конденсат внутри трубок III корпуса также передается по трубе в конденсатор-холодильник. Обогрев зоны предварительного нагрева и трубчатых испарителей II и III корпусов осуществляется собственно вторичным паром I и II корпусов. Вторичный очищенный пар из II корпуса по трубе поступает непосредственно в холодильник и конденсируется. Объединенный конденсат из холодильника проходит специальный теплообменник, где поддерживает температура от 80 до 95oС. На выходе из него в дистилляте замедляется удельная электропроводность. Если вода оказывается недостаточного качества по этому показателю, она отбрасывается в канализацию.
Полученная вода поступает в систему для сбора и хранения. Система состоит из двух емкостей с паровой рубашкой и стерилизующим воздушным фильтром к насосу, который перекачивает воду из одной емкости в другую с постоянной скоростью 1-3 м/с.
Температура циркулирующей воды поддерживается теплообменникам. Соединяющие трубы должны иметь наклон 2-3o. Максимальный срок хранения воды для инъекций - 24 часа (в асептических условиях).
Подготовка помещений (ВР 1.4)
В соответствии с требованиями к помещениям для производства лекарственных средств в асептических условиях РДП 46-3-80 все производственные помещения делятся на 4 класса в зависимости от чистоты воздуха. Класс чистоты | Содержание частиц |
подпор воздуха мм Hg | |||
мех. в 1 л воздуха | микробных клеток в 1м3 | ||||
0,5 мкм | 4 мкм | 5 мкм | |||
1 2 3 4 | 10 350 3500 - | - 15 50 - | - 10 25 - | - 50 100 - | - 3-4 1,5-2 не нормируется |
Помещения 1-го класса чистоты предназначаются для выгрузки и наполнения стерильных ампул. В помещениях 2-го класса проводится приготовление растворов, фильтрование, мойка ампул, сушка и стерилизация. Помещение 3-го класса – для мойки и стерилизации вспомогательных материалов. В помещениях 4-го класса осуществляется мойка дрога, выделка ампул и др.
Между помещениями различных классов чистоты создается подпор воздуха и устанавливается шлюзовые соединена. При входе в помещение 1-го класса персонал должен проходить через тамбур, где устанавливаются воздушный душ.
В „чистых“ помещениях необходимо поддерживать определенную температуру и влажность в соответствии с ГОСТ 12.1.005-76, использовать бактерицидные лампы. Помещение должны быть герметизированы. Воздух подается через фильтр предварительной очистки и затем – через стерилизующий фильтр с материалом марки ФПП-1. Скорость потока воздуха по всему сечению помещения - 27,5 м/мин±20%.
Требования к одежде персонала:
• воздухопроницаемость;
• пыленепроницаемость;
• отсутствие статического электричества;
• возможность стерилизации.
Используется ткань из лавсана с хлопком (артикул 62138).
Обработка помещений приводится: 6% раствор пероксида водорода с моющими средствами „Прогресс“.
Подготовка фильтров (ВР 1.5)
Фильтр ХНИХФИ
Подготовка фильтра
Фильтр ХНИХФИ состоит из корпуса и перфорированной трубки, на которую плотно и ровно наматывает фильтрующий материал. Фильтруемая жидкость поступает в патрубок, через слой фильтрующего материала и отверстие в перфорированной трубке проходит внутрь и удаляется через другой патрубок. Корпус фильтра изготовлен из нержавеющей стали.
На внутренний цилиндр укрепляется два слоя ткани ФПП-15 и слой марли толщиной 1,5 см. Цилиндр закрепляют в корпусе фильтра. Фильтр устанавливают в вертикальном положении и присоединяют к нему трубопроводы, подающие жидкость и отводящие фильтрат. Высота столба жидкости должна быть около 1 м.
Регенерация фильтра ХНИХФИ
Регенерация фильтра осуществляется подачей воды очищенной в выпускной патрубок в течение 1,5 часов.
Мембранный фильтр
Используется мембранный фильтр „Владипор“ МФА-А на основе ацетилцеллюлозы. Размер пор – 1 мкм. Целостность мембраны контролируется „тестом появления пузырьков“ – определением давления в момент появления пузырьков в выходящем потоке жидкости. Значение давления появления пузырьков должно совпадать с указанным в технической документации для данного фильтра.
Дата: 2019-07-30, просмотров: 181.