Цели и задачи пожарной автоматики при обеспечении пожарной безопасности
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Содержание

 

1. Цели и задачи пожарной автоматики при обеспечении пожарной безопасности. 2

1.1 Цель пожарной автоматики. 2

1.2 Цель заинтересованных сторон. К чему стремиться. 3

1.3 Задачи пожарной сигнализации. 5

2. Критерий достижения цели. 9

2.1 Адресная пожaрнaя сигнaлизация. 10

2.2 Адресно-аналоговая пожaрнaя сигнaлизация. 10

3. Характеристика объекта. 14

4. Сценарий пожара. 15

5. Расчет размещения извещателей. 20

5.1 Последовательность выбора извещателей пламени. 23

6. Обоснование выбора обнаружения пожара. 26

Литература. 27

 



Цели и задачи пожарной автоматики при обеспечении пожарной безопасности

Цель пожарной автоматики

 

В современном обществе огромное внимание уделяется созданию систем пожарной безопасности объектов, которые предназначены для защиты жизни людей и материальных ценностей от огня. Ведь опасность для жизни, связанная с возникновением пожара, и ущерб, наносимый огнем, в десятки раз превышают те, которые могут быть вызваны кражами, ограблениями и т.п.

Основная цель - спасение жизни людей.

Зачастую последствия пожаров и связанные с ними убытки ложатся тяжелым грузом на плечи не только пострадавшего, но и общества в целом. Именно поэтому, все большее количество людей начинают задумываться о создании профессиональных систем пожарной сигнализации.

Автоматические системы пожарной сигнализации предназначены для быстрого и надежного обнаружения зарождающегося пожара с помощью распознавания явлений, сопровождающих пожар, таких как выделение тепла, дыма, невидимых продуктов сгорания, инфракрасного излучения и т.п. В случае обнаружения пожара центральная станция должна выполнять предписанные действия по управлению системами автоматики здания (отключение вентиляционной системы, включение дымоудаления, системы оповещения, световых и звуковых оповещателей, запуск системы пожаротушения, останов лифтов, разблокирование дверей и т.п.). Это дает возможность людям, находящимся в здании, а также пожарной части или локальному посту пожарной охраны объекта предпринять действия, необходимые для ликвидации пожара на стадии его зарождения, и минимизировать наносимый ущерб.

Назначение системы пожарной сигнализации определяет ее общую структуру, а именно, наличие трех составляющих системы, выполняющих различные функции:

обнаружение пожара осуществляется автоматическими пожарными извещателями с различными принципами обнаружения и различными методами обработки и обмена информацией;

обработка информации, поступающей с извещателей, и выдача результатов оператору выполняются центральной станцией и пультом управления;

выполнение, предписанных действий для оповещения персонала и пожарной части для устранения очага пожара, выполняется центральной станцией а также быстрое и точное реагирование подразделений пожарной части и локальных постов пожарной охраны.

Все три звена тесно взаимосвязаны между собой, и эффективность работы системы пожарной сигнализации в целом зависит от надежности и стабильности работы каждой ее составляющей. Однако, основополагающую роль при создании профессиональных систем пожарной безопасности объектов играют пожарные извещатели. Именно они должны обеспечить быстрое и надежное обнаружение очага пожара.

 

Критерий достижения цели

 

На любом объекте существует угроза нанесения ущерба имуществу и здоровью людей при возникновении неконтролируемого возгорания или пожара. Единственный способ свести в этом случае возможные потери к минимуму - это построить эффективную систему обнаружения возгорания. Основным способом решения этой проблемы является установка системы пожaрной сигнaлизации, которая предназначается для обнаружения очагов возгорания и управления системами оповещения людей о пожаре, установками автоматического пожаротушения, а также технологическим оборудованием.

Система пожaрной сигнaлизации - это совокупность совместно действующих средств пожарной сигнализации, установленных на защищаемом объекте, для обнаружения пожара, обработки, представления в заданном виде извещения о пожаре на этом объекте, специальной информации и выдачи команд на включение технических устройств.

В настоящее время можно выделить три основных типа пожaрной сигнaлизации:

Традиционная пороговая (неадресная) пожaрнaя сигнaлизация.

Традиционные пороговые (неадресные) ПС представляют собой систему с лучевой архитектурой, в которой приемно-контрольный прибор определяет зону возникновения тревожного извещения в пределах шлейфа. В шлейф пожaрной сигнaлизации такого типа включаются обычные пороговые (активные, пассивные) датчики. При срабатывании датчика его номер и помещение на станции не указываются, инициируется только номер шлейфа. Применение неадресных систем целесообразно для небольших объектов (не более 30-40 помещений).



Характеристика объекта

 

Объект "офисное помещение" представляет собой отдельное железобетонное здание, состоящее из 3-х помещений (3 на первом этаже).

Доступ в здание осуществляется через главный входа.

Стены периметра объекта – капитальные; решетки на окнах отсутствуют; общая площадь помещений составляет 50 м2; во всех помещениях высота потолков – 255 см; отопление водяное с радиаторами, расположенными под каждым окном; объект телефонизирован.

Объект содержит следующие помещения: "кабинет директора"-1 шт., "офисное помещение"-1 шт., "санузел".

Защищаемые зоны помещений по классификации ПУЭ относятся к классам П-11А.

Несущие конструкции здания – железобетонные с применением бетона на известняковом щебне с плотностью 2250 кг/м3. Высота офиса – 2,8 м. из Перекрытия полов железобетонные, толщины у которых равнялись 0,2 м. Стены выполнены из красного кирпича на цементно-песчаном растворе. Толщина наружных стен 0,22 м и внутренних стен – 0,11 м.

 



Сценарий пожара

 

Выбор расчетной схемы развития возможного пожара в защищаемом помещении и определение класса пожара по темпу изменения его тепловой мощности.

1. При выборе расчетной схемы развития пожара все многообразие возможных схем целесообразно свести к двум схемам – круговое распространение пожара и горение штабеля из твердых горючих материалов.

К круговой схеме могут быть отнесены случаи распространения пожара по твердым (или волокнистым) горючим материалам, равномерно расположенным на достаточно больших площадях, а также случаи распространения пожара по рассредоточено расположенным горючим материалам, небольшое расстояние между которыми не препятствует переходу пламени с горящего материала на не горящий. Ко второй схеме могут быть отнесены случаи горения материалов, сложенных в виде штабелей различных размеров.

2. Тепловую мощность очага пожара для выбранных расчетных схем рассчитывают по формуле:

Q = Kт. τ2, кВт (1)

где Кт - коэффициент, характеризующий темп изменения тепловой мощности очага пожара, кВт/с2;

τ - время с момента возникновения пламенного горения, с.

Коэффициент Кт рассчитывают в зависимости от выбранной схемы развития пожара по формулам:

а) для кругового распространения пожара

Кт = πη V2л ψуд Qн, (2)

где η - коэффициент полноты горения (допускается принимать равным 0,87);

Vл - линейная скорость распространения пламени по поверхности материала, м/с;

ψуд - удельная массовая скорость выгорания материала, кг/(м2 с);

Qн - низшая рабочая теплота сгорания материала, кДж/кг.

Значения Vл, ψуд и Qн принимаются по справочной литературе.

б) для случая горения твердых горючих материалов, сложенных в виде штабеля

Кт = 1055/τ2*, (3)

где τ* - время достижения характерной тепловой мощности очага пожара, принимаемой равной 1055 кВт, с

3. Определяют класс пожара по темпу его развития в зависимости от значения коэффициента Кт:

медленный темп развития пожара – темп изменения тепловой мощности очага пожара характеризуется условием Кт < 0,01 кВт/с2;

средний темп развития пожара - темп изменения тепловой мощности очага пожара характеризуется условием 0,01 < Кт < 0,03 кВт/с2;

быстрый темп развития пожара - темп изменения тепловой мощности очага пожара характеризуется условием 0,03 < Кт < 0,11 кВт/с2;

сверхбыстрый темп развития пожара - темп изменения тепловой мощности очага пожара характеризуется условием Кт > 0,11 кВт/с2

Определение предельно допустимой тепловой мощности очага пожара к моменту его обнаружения.

1. Величину предельно допустимой тепловой мощности очага пожара Qпд определяют с учетом особенностей защищаемого помещения и возлагаемой на АУПС задачи по обеспечению безопасности людей и/или материальных ценностей.

2. При локально размещенной в помещении горючей нагрузке величина Qпд может быть непосредственно задана по справочной литературе, содержащей данные по максимальной тепловой мощности, выделяемой при горении различных материалов (предметов), а также по формуле:

Qпд = η ψуд Fпд Qн, кВт (4)

где Fпд - площадь, занимаемая горючей нагрузкой, м2.

Выбор типа и размеров расчетного очага пожара производится с учетом заданной величины возможного материального ущерба.

3. Для кругового распространения пожара и с учетом задачи АУПС по обеспечению пожарной безопасности материальных ценностей величина Qпд может определяться по формуле:

Qпд = Кт. Кб. [Fпд / (πV2л)] 0,5 (5)

где Кб – коэффициент безопасности (допускается принимать равным 0,8);

Fпд – предельно допустимая площадь пожара на момент обнаружения АУПС определяется на основании технико-экономического обоснования мер противопожарной защиты для конкретного объекта (допускается принимать равной 6 м2).

4. Величина Qпд может быть рассчитана по значению необходимого времени обнаружения пожара, которое рассматривается в данном случае как критерий выполнения возложенной на АУПС задачи. Расчет проводится по следующей формуле:

Qпд = Кт. τноб2, кВт (6)

где τноб - необходимое время обнаружения пожара, с.

Необходимое время обнаружения пожара определяют с учетом возложенных на АУПС задач по обеспечению безопасности людей и/или материальных ценностей и рассчитываются по методикам, разработанным головными организациями, в области обеспечения пожарной безопасности.

При моделировании пожара в здании теплофизические свойства железобетонных и кирпичных конструкций принимались по табл.3, 4.

 

Таблица 3 Теплофизические характеристики некоторых материалов использованных на строительные конструкции здания

материал Средняя плотность (В сухом состоянии) кг/м2 Коэффициент теплопроводности, Удельная теплоемкость Дж/кг Степень черноты
Кирпич глиняный обыкновенный 1580 0,34+0,00017t 710+0.42t 094
Тяжелый бетон на известняковым заполнителе 2250 1.14+0.00055t 710+0.83t 0.625
Цементно-песчаная штукатурка 1930 0.62+0.00033t 770+0.63t 0.867

 

Таблица 4 Теплофизические характеристики материалов

материалы Tig Δ H, кДж/кг L, кДж/кг P, Кг/м3 С, кДж/(кг К) Сбр (кДж/с) 2 W% M max
Обивочный 290 30,5 1,2 22   2,05   0,067
Деревянный 360 11,9 3,9 440 1,36   11,9 0,047
Пластмасса 370 39,7 1,7 105   4,05   0,034
Ковер 290 29,7 2 750   6,07   0,014

 

Где Tig - температура воспламенения,

Δ H – низшая теплота сгорания,

L, - теплота газификации,

P – плотность,

С – теплоемкость,

Сбр – тепловая инерция,

W – влажность,

M max - максимальная скорость выгорания.

Данные о размерах дверных и оконных проемов приведены в табл.5.

При расчетах температурного режима пожара предполагалось, что разрушение остекления окон происходит в момент, когда температура у верха оконных рам достигает 300 °C.


Таблица 5 Данные о размерах дверных и оконных проемов

помещения

комната

Площадь пола

Размеры проемов

Суммарная площадь проемов м2

окна двери

офис

Кабинет директора 15,3 1,4*1,2 0,8*2,1 3,36
офис 28,05 1,4*1,2 0,8*2,1 3,36

 

Горючая нагрузка была обследована по детерминистической оценке во всех помещениях рассматриваемого здания. Средняя горючая нагрузка показана в таблице 6

 

Таблица 6 Средняя горючая нагрузка в помещениях

Помещение

Средняя горючая нагрузка, МДж/м2

Кабинет директора офис всего
офис 423 398 407

 

 

Методом математического моделирования исследована динамика развития пожара в помещениях.

При закрытой входной двери, время развития пожара в этом офисе достигает 2500 с и в большинстве пожаров максимальная температура изменяется в диапазоне от 1000°С до 1100°С. Время образования опасных концентраций токсичных газов изменяется от 250 с до 310 с.




Литература

 

1. ГОСТ 12.1 004-91. ССБТ. Пожарная безопасность. Общие требования.

2. ГОСТ 12.1 019-79 ССБТ. Электробезопасность. Общие требования и номенклатура видов защиты.

3. ГОСТ 12.1 030-81 ССБТ. Электробезопасность. Защитное заземление, зануление.

4. ГОСТ 12.2 003-91 ССБТ. Оборудование производственное. Общие требования безопасности.

5. ГОСТ 12.2 007.0-75 ССБТ. Изделия электротехнические. Общие требования безопасности.

6. ГОСТ 12.3 046-91 ССБТ. Установки пожаротушения автоматические. Общие технические требования.

7. ГОСТ 12.4 009-83 ССБТ. Пожарная техника для защиты объектов. Основные виды, размещение и обслуживание.

8. ГОСТ 12.4 026-76 ССБТ. Цвета сигнальные и знаки безопасности.

9. ГОСТ 14254-96 Степени защиты, обеспечиваемые оболочками.

10. ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды.

11. ГОСТ Р 50680-94 Установки водяного пожаротушения автоматические. Общие технические требования. Методы испытаний.

12. ГОСТ Р 50800-95. Установки пенного пожаротушения автоматические. Общие технические требования. Методы испытаний.

13. ГОСТ Р 50898-96 Извещатели пожарные. Огневые испытания.

14. ГОСТ Р 50969-96 Установки газового пожаротушения автоматические. Общие технические требования. Методы испытаний.

15. ГОСТ Р 51089-97. Приборы приемно-контрольные и управления пожарные. Общие технические требования. Методы испытаний.

16. НПБ 56-96 Установки порошкового пожаротушения импульсные. Временные нормы и правила проектирования и эксплуатации.

17. НПБ 57-97 Приборы и аппаратура автоматических установок пожаротушения и пожарной сигнализации. Помехоустойчивость и помехоэмиссия. Общие технические требования. Методы испытаний.

18. НПБ 58-97 Системы пожарной сигнализации адресные. Общие технические требования. Методы испытаний.

19. НПБ 65-97 Извещатели пожарные оптико-электронные. Общие технические требования. Методы испытаний.

20. НПБ 66-97 Извещатели пожарные автономные. Общие технические требования. Методы испытаний.

21. НПБ 70-98 Извещатели пожарные ручные. Общие технические требования. Методы испытаний.

22. НПБ 71-98 Извещатели пожарные газовые. Общие технические требования. Методы испытаний.

23. НПБ 72-98 Извещатели пожарные пламени. Общие технические требования. Методы испытаний.

24. НПБ 75-98 Приборы приемно-контрольные пожарные. Приборы управления пожарные. Общие технические требования. Методы испытаний.

25. НПБ 76-98 Извещатели пожарные. Общие технические требования. Методы испытаний.

26. НПБ 77-98 Технические средства оповещения и управления эвакуацией пожарные. Общие технические требования. Методы испытаний.

27. НПБ 85-2000 Извещатели пожарные тепловые. Общие технические требования. Методы испытаний.

28. НПБ 88-2000 Приборы приемно-контрольные и управления пожарные. Общие технические требования. Методы испытаний.

29. НПБ Установки пожаротушения и сигнализации. нормы проектирования и применения.

30. НПБ Извещатели радиоизотопные. Общие технические требования. Методы испытаний.

31. НПБ Извещатели пожарные линейные. Общие технические требования. Методы испытаний.

32. НПБ 104-95 Проектирование систем оповещения людей о пожаре в зданиях и сооружениях.

33. НПБ 105-95 Определение категорий помещений и зданий по взрывопожарной и пожарной опасности.

34. НПБ 110-99 Перечень зданий и сооружений, помещений и оборудования, подлежащих защите автоматическими установками тушения и обнаружения пожара.

35. Методические рекомендации. Автоматические системы пожаротушения и пожарной сигнализации. Правила приемки и контроля.

Содержание

 

1. Цели и задачи пожарной автоматики при обеспечении пожарной безопасности. 2

1.1 Цель пожарной автоматики. 2

1.2 Цель заинтересованных сторон. К чему стремиться. 3

1.3 Задачи пожарной сигнализации. 5

2. Критерий достижения цели. 9

2.1 Адресная пожaрнaя сигнaлизация. 10

2.2 Адресно-аналоговая пожaрнaя сигнaлизация. 10

3. Характеристика объекта. 14

4. Сценарий пожара. 15

5. Расчет размещения извещателей. 20

5.1 Последовательность выбора извещателей пламени. 23

6. Обоснование выбора обнаружения пожара. 26

Литература. 27

 



Цели и задачи пожарной автоматики при обеспечении пожарной безопасности

Цель пожарной автоматики

 

В современном обществе огромное внимание уделяется созданию систем пожарной безопасности объектов, которые предназначены для защиты жизни людей и материальных ценностей от огня. Ведь опасность для жизни, связанная с возникновением пожара, и ущерб, наносимый огнем, в десятки раз превышают те, которые могут быть вызваны кражами, ограблениями и т.п.

Основная цель - спасение жизни людей.

Зачастую последствия пожаров и связанные с ними убытки ложатся тяжелым грузом на плечи не только пострадавшего, но и общества в целом. Именно поэтому, все большее количество людей начинают задумываться о создании профессиональных систем пожарной сигнализации.

Автоматические системы пожарной сигнализации предназначены для быстрого и надежного обнаружения зарождающегося пожара с помощью распознавания явлений, сопровождающих пожар, таких как выделение тепла, дыма, невидимых продуктов сгорания, инфракрасного излучения и т.п. В случае обнаружения пожара центральная станция должна выполнять предписанные действия по управлению системами автоматики здания (отключение вентиляционной системы, включение дымоудаления, системы оповещения, световых и звуковых оповещателей, запуск системы пожаротушения, останов лифтов, разблокирование дверей и т.п.). Это дает возможность людям, находящимся в здании, а также пожарной части или локальному посту пожарной охраны объекта предпринять действия, необходимые для ликвидации пожара на стадии его зарождения, и минимизировать наносимый ущерб.

Назначение системы пожарной сигнализации определяет ее общую структуру, а именно, наличие трех составляющих системы, выполняющих различные функции:

обнаружение пожара осуществляется автоматическими пожарными извещателями с различными принципами обнаружения и различными методами обработки и обмена информацией;

обработка информации, поступающей с извещателей, и выдача результатов оператору выполняются центральной станцией и пультом управления;

выполнение, предписанных действий для оповещения персонала и пожарной части для устранения очага пожара, выполняется центральной станцией а также быстрое и точное реагирование подразделений пожарной части и локальных постов пожарной охраны.

Все три звена тесно взаимосвязаны между собой, и эффективность работы системы пожарной сигнализации в целом зависит от надежности и стабильности работы каждой ее составляющей. Однако, основополагающую роль при создании профессиональных систем пожарной безопасности объектов играют пожарные извещатели. Именно они должны обеспечить быстрое и надежное обнаружение очага пожара.

 

Дата: 2019-07-30, просмотров: 171.