ВВЕДЕНИЕ
Ректификация - массообменный процесс, который осуществляется в большинстве случаев в противоточных колонных аппаратах с контактными элементами (насадки, тарелки), аналогичными используемыми в процессе абсорбции. Поэтому методы подхода к расчету и проектированию ректификационных и абсорбционных установок имеют много общего. Тем не менее ряд особенностей процесса ректификации (различное соотношение нагрузок по жидкости и пару в нижней и верхней частях колонны, переменные по высоте колонны физические свойства фаз и коэффициент распределения, совместное протекание процессов массо- и теплопереноса) осложняет его расчет.
Одна из сложностей заключается в отсутствии обобщенных закономерностей для расчета кинетических коэффициентов процесса ректификации. В наибольшей степени это относится к колоннам диаметром более 800 мм с насадками и тарелками, широко применяемым в химических производствах. Большинство рекомендаций сводится к использованию для расчета ректификационных колон кинетических зависимостей, получаемых при исследовании абсорбционных процессов.
Большое разнообразие тарельчатых контактных устройств затрудняет выбор оптимальной конструкции тарелки. При этом наряду с общими требованиями (высокая интенсивность единицы объема аппарата, его стоимость и др.) ряд требований может определяться спецификой производства: большим интервалом устойчивой работы при изменении нагрузок по фазам, способность тарелок работать в среде загрязненных жидкостей, возможностью защиты от коррозии и т.п. Зачастую эти качества становятся превалирующими, определяющими пригодность той или иной конструкции для использования в каждом конкретном процессе.
Размеры тарельчатой колонны (диаметр и высота) обусловлены нагрузками по пару и жидкости, типом контактного устройства (тарелки), физическими свойствами взаимодействующих фаз.
Ректификацию жидкостей, не содержащих взвешенные частицы и не инструктирующих, при атмосферном давлении в аппаратах большой производительности часто осуществляют на ситчатых переточных тарелках.
1- емкость для исходной смеси; 2, 9 – насосы; 3 – теплообменник-подогреватель; 4 – кипятильник; 5 – ректификационная колонна; 6 – дефлегматор; 7 – холодильник дистиллята; 8 – емкость для сбора дистиллята; 10 – холодильник кубовой жидкости; 11 – емкость для кубовой жидкости
Рисунок 1 – Принципиальная схема ректификационной установки
Принципиальная схема ректификационной установки представлена на рис.1. Исходную смесь из промежуточной емкости 1 центробежным насосом 2 подают в теплообменник 3, где она подогревается до температуры кипения. Нагретая смесь поступает на разделение в ректификационную колонну 5 на тарелку питания, где состав жидкости равен составу исходной смеси xp.
Стекая вниз по колонне, жидкость взаимодействует с поднимающимся вверх паром, образующимся при кипении в кубовой жидкости в кипятильнике 4. Начальный состав пара примерно равен составу кубового остатка xw , т.е. обеднен легколетучим компонентом. В результате массообмена с жидкостью пар обогащается легколетучим компонентом. Для более полного обогащения верхнюю часть колонны орошают в соответствии с заданным флегмовым числом жидкостью (флегмой) состава xp, получаемой в дефлегматоре 6 путем конденсации пара, выходящего из колонны. Часть конденсата выводится из дефлегматора в виде готового продукта разделения – дистиллята, который охлаждается в теплообменнике 7 и направляется в промежуточную емкость 8.
Из кубовой части колонны насосом 9 непрерывно выводится кубовая жидкость – продукт обогащены труднолетучим компонентом, который охлаждается в теплообменнике 10 и направляется в емкость 11.
Таким образом, в ректификационной колонне осуществляется непрерывный неравновесный процесс разделения исходной бинарной смеси на дистиллят (с высоким содержанием легколетучего компонента) и кубовый остаток (обогащенный труднолетучим компонентом).
Высота насадки
Высоту насадки Н определяют по модифицированному уравнению массопередачи:
(1.24)
где - общее число единиц переноса по паровой фазе;
- общая высота единицы переноса, м.
Общее число единиц переноса вычисляют по уравнения:
(1.25)
Решим этот интеграл методом графического интегрирования:
(1.26)
где S – площадь, ограниченная кривой, ординатами и осью абсцисс рис. 8; Мх, Мy – масштабы осей координат.
Данные для графического изображения функции приведены ниже:
y | y*-y | 1/(y*-y) | y | y*-y | 1/(y*-y) | |
0,020 | 0,043 | 23,26 | 0,629 | 0,096 | 10,42 | |
0,064 | 0,060 | 16,67 | 0,703 | 0,092 | 10,87 | |
0,097 | 0,068 | 14,70 | 0,8 | 0,075 | 13,34 | |
0,137 | 0,079 | 12,66 | 0,837 | 0,061 | 16,39 | |
0,265 | 0,100 | 10,00 | 0,867 | 0,05 | 20,00 | |
0,391 | 0,084 | 11,90 | 0,899 | 0,035 | 28,57 | |
0,500 | 0,064 | 15,62 | 0,928 | 0,027 | 37,04 | |
0,528 | 0,072 | 13,89 | 0,953 | 0,022 | 45,45 | |
0,545 | 0,080 | 12,50 | 0,967 | 0,018 | 55,55 | |
0,564 | 0,086 | 11,63 | 0,970 | 0,015 | 66,67 |
Рисунок 8 – Графическое определение общего числа единиц переноса в паровой фазе для верхней (укрепляющей) части колонны в интервале изменения состава пара от уF до уР и для нижней (исчерпывающей) – в интервале от от уW до уF.
По рисунку находим общее число единиц переноса в верхней и нижней частях колонны:
; .
Общую высоту единиц переноса определим по уравнению аддитивности:
(1.27)
где и - частные высоты единиц переноса соответственно в жидкой и паровой фазах;
- средний коэффициент распределения в условиях равновесия для соответствующей части колоны.
Отношение нагрузок по пару и жидкости G/L, кмоль/кмоль, равно:
для верхней части колонны
(1.28)
для нижней части колонны
(1.29)
где
(1.30)
Подставив численные значения, получим:
Высота единицы переноса в жидкой фазе
(1.31)
где - коэффициенты, определяемые по рисунку;
- критерий Прандтля для жидкости;
- высота слоя насадки одной секции, которая из условия прочности опорной решётки и нижних слоёв насадки, а также из условия равномерности распределения жидкости по насадке не должна превышать 3 м.
Высота единиц переноса в паровой фазе
(1.32)
где - коэффициент, определяемые по рисунку ;
- критерий Прандтля для пара;
- массовая плотность орошения, кг/(м2 с);
- диаметр колонны, м;
Поверхностное натяжение для верхней части колонны, принимаем поверхностное натяжение легколетучего компонента при температуре верха колонны, а поверхностное натяжение для нижней части колонны, принимаем поверхностное натяжение для тяжело кипящего компонента при температуре низа колонны.
Необходимо определить вязкость паров и коэффициенты диффузии в жидкой и паровой фазах. Вязкость паров для верхней части колонны:
(1.33)
где и - вязкость паров этилацетата и толуола при средней температуре верхней части колонны, [3 c.36], мПа с;
Примечание: так как нет надёжных данных для определения вязкости паров этилацетата, поэтому берём вязкость паров для диэтилового эфира.
- средняя концентрация паров:
Подставив, получим:
Аналогично расчётом для нижней части колонны находим
(1.34)
Коэффициент диффузии в жидкости при средней температуре t (в 0С) равен:
(1.35)
Коэффициенты диффузии в жидкости при 20 0С можно вычислить по приближённой формуле:
(1.36)
где А, В – коэффициенты, зависящие от свойств растворённого вещества и растворителя;
- мольные объёмы компонентов в жидком состоянии при температуре кипения, см3/моль;
- вязкость жидкости при 20 0С, мПа∙с,[2 табл. V c.556].
Вычислим вязкость жидкости для верхней части колонны при температуре 20 0С:
Вычислим вязкость жидкости для нижней части колонны при температуре 20 0С:
Тогда коэффициент диффузии в жидкости для верхней части колонны при 20 0С равен:
Температурный коэффициент b определяют по формуле:
(1.37)
где и принимают при температуре 20 0С, [2 табл. V c.556 и 3 с.36].
Плотность жидкости при 20 0С в верхней и нижней частей колонны найдём по формуле:
Тогда
Тогда
Подставим полученные численные значения для определения температурного коэффициента:
Отсюда
Аналогично для нижней части колонны находим:
Коэффициент диффузии в жидкости для нижней части колонны при 20 0С равен:
Температурный коэффициент b определяют по формуле:
Тогда коэффициент диффузии в жидкости для нижней части колонны:
Коэффициент диффузии в паровой фазе может быть вычислен по уравнению:
(1.38)
где Т – средняя температура в соответствующей части колонны, К;
Р – абсолютное давление в колонне, Па.
Тогда для верхней части колонны:
Аналогично для нижней части колонны получим:
Подставив численные значения, получим:
Таким образом, для верхней части колонны:
Для нижней части колонны:
По уравнению находим общую высоту единиц переноса для верхней и нижней части колонны:
(1.39)
(1.40)
Значения m=0,628 для верхней части колонны и m=1,737 - для нижней, определены арифметическим усреднением локальных значений m в интервалах изменения составов жидкости соответственно от xF до xP и от xW до xF.
Высота насадки в верхней и нижней частях колонны равна соответственно:
Общая высота насадки в колонне:
С учётом того, что высота слоя насадки в одной секции Z=2 м, общее число секций в колонне составляет 4 (2 секции в верхней части и 2 – в нижней).
Общую высоту ректификационной колонны определяют по уравнения:
(1.41)
где Z – высота насадки в одной секции, м;
n – число секций;
- высота промежутков между секциями насадки, в которых устанавливают распределители жидкости, м;
- соответственно высота сепарационного пространства над насадкой и расстояние между днищем колонны и насадкой, м.
Общая высота колонны:
Подбор кипятильника
Подобрать нормализованный вариант конструкции кожухотрубчатого испарителя ректификационной колонны, с получением GW= паров водного раствора органической жидкости, кипящая при температуре t2=109 0C, удельная теплота конденсации равна r2=363000 Дж/кг
В качестве теплоносителя используется насыщенный водяной пар давлением 0,3 МПа. Удельная теплота конденсации r1=2171000 Дж/кг, температура конденсации t1=1330С.
Расход греющего пара определим из уравнения теплового баланса:
(7.98)
Средняя разность температур:
Рисунок 13 – Зависимость изменение температуры теплоносителей от поверхности теплообмена.
Примем ориентировочное значение коэффициента теплопередачи Kор=400 Вт/(м2∙К). Тогда ориентировочное значение требуемой поверхности составит:
(7.100)
Выбираем испаритель по ГОСТ 15119-79 и ГОСТ 15121-79, [1.табл. 2.3 с. 51].
Поверхность теплообмена S=40,0 м2.
Длина труб L=2,0 м.
Общее число труб n=257 шт.
Число ходов z=1
Диаметр труб d=25x2 мм.
Диаметр кожуха D=600 мм.
Запас площади составляет:
Расчёт штуцеров
Внутренний диаметр трубопроводов определим по уравнению:
(8.101)
где - расход пара или жидкости, кг/с;
- плотность пара или жидкости, кг/м;
- скорость пара или жидкости, м/с.
Заключение
В задании на курсовое проектирование произвел расчет двух ректификационных установок непрерывного действия для разделения смеси этилацетат – толуол.
Определил, что тарельчатая ректификационная колонна, с ситчатыми однопоточными тарелками типа ТС, является наиболее выгоднее для разделения бинарной смеси, чем насадочная ректификационная колонна с кольцами Рашига.
Тарельчатая ректификационная колонна диаметром 1000мм, высотой 8,7 м.
Рассчитал материальный и тепловой балансы ректификационной установки, рассчитал и подобрал дополнительное оборудование: дефлегматор, подогреватель и кипятильник.
Изучил мероприятия по технике безопасности на предприятиях химической промышленности и оказание первой помощи пострадавшим.
Список использованной литературы
1 Основные процессы и аппараты химической технологии: пособие по проектированию/ Г.С. Борисов, В.П. Брыков, Ю.И. Дытнерский и др. Под ред. Ю.И. Дытнерского, 2-е изд., перераб. и дополн. М.: Химия, 1991. – 496с.
2 Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии. Изд. 8-е, пер. и доп. Л., Химия,1976. – 552с.
3 Бинарные смеси: Учеб. Справочник / Авторы-составители Ю.И. Гущин; В.К. Леонтьев. – Ярославль: Изд-во ЯГТУ, 2003. – 104 с.
ВВЕДЕНИЕ
Ректификация - массообменный процесс, который осуществляется в большинстве случаев в противоточных колонных аппаратах с контактными элементами (насадки, тарелки), аналогичными используемыми в процессе абсорбции. Поэтому методы подхода к расчету и проектированию ректификационных и абсорбционных установок имеют много общего. Тем не менее ряд особенностей процесса ректификации (различное соотношение нагрузок по жидкости и пару в нижней и верхней частях колонны, переменные по высоте колонны физические свойства фаз и коэффициент распределения, совместное протекание процессов массо- и теплопереноса) осложняет его расчет.
Одна из сложностей заключается в отсутствии обобщенных закономерностей для расчета кинетических коэффициентов процесса ректификации. В наибольшей степени это относится к колоннам диаметром более 800 мм с насадками и тарелками, широко применяемым в химических производствах. Большинство рекомендаций сводится к использованию для расчета ректификационных колон кинетических зависимостей, получаемых при исследовании абсорбционных процессов.
Большое разнообразие тарельчатых контактных устройств затрудняет выбор оптимальной конструкции тарелки. При этом наряду с общими требованиями (высокая интенсивность единицы объема аппарата, его стоимость и др.) ряд требований может определяться спецификой производства: большим интервалом устойчивой работы при изменении нагрузок по фазам, способность тарелок работать в среде загрязненных жидкостей, возможностью защиты от коррозии и т.п. Зачастую эти качества становятся превалирующими, определяющими пригодность той или иной конструкции для использования в каждом конкретном процессе.
Размеры тарельчатой колонны (диаметр и высота) обусловлены нагрузками по пару и жидкости, типом контактного устройства (тарелки), физическими свойствами взаимодействующих фаз.
Ректификацию жидкостей, не содержащих взвешенные частицы и не инструктирующих, при атмосферном давлении в аппаратах большой производительности часто осуществляют на ситчатых переточных тарелках.
1- емкость для исходной смеси; 2, 9 – насосы; 3 – теплообменник-подогреватель; 4 – кипятильник; 5 – ректификационная колонна; 6 – дефлегматор; 7 – холодильник дистиллята; 8 – емкость для сбора дистиллята; 10 – холодильник кубовой жидкости; 11 – емкость для кубовой жидкости
Рисунок 1 – Принципиальная схема ректификационной установки
Принципиальная схема ректификационной установки представлена на рис.1. Исходную смесь из промежуточной емкости 1 центробежным насосом 2 подают в теплообменник 3, где она подогревается до температуры кипения. Нагретая смесь поступает на разделение в ректификационную колонну 5 на тарелку питания, где состав жидкости равен составу исходной смеси xp.
Стекая вниз по колонне, жидкость взаимодействует с поднимающимся вверх паром, образующимся при кипении в кубовой жидкости в кипятильнике 4. Начальный состав пара примерно равен составу кубового остатка xw , т.е. обеднен легколетучим компонентом. В результате массообмена с жидкостью пар обогащается легколетучим компонентом. Для более полного обогащения верхнюю часть колонны орошают в соответствии с заданным флегмовым числом жидкостью (флегмой) состава xp, получаемой в дефлегматоре 6 путем конденсации пара, выходящего из колонны. Часть конденсата выводится из дефлегматора в виде готового продукта разделения – дистиллята, который охлаждается в теплообменнике 7 и направляется в промежуточную емкость 8.
Из кубовой части колонны насосом 9 непрерывно выводится кубовая жидкость – продукт обогащены труднолетучим компонентом, который охлаждается в теплообменнике 10 и направляется в емкость 11.
Таким образом, в ректификационной колонне осуществляется непрерывный неравновесный процесс разделения исходной бинарной смеси на дистиллят (с высоким содержанием легколетучего компонента) и кубовый остаток (обогащенный труднолетучим компонентом).
Ректификационной колонны непрерывного действия
Дата: 2019-07-30, просмотров: 186.