Проверка ряда на наличие тренда. Непосредственное выделение тренда
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Изучение тренда включает в себя два основных этапа :

1) Ряд динамики проверяется на наличие тренда

2) Производится выравнивание временного ряда и непосредственное выделение тренда с экстраполяцией полученных показателей – результатов .

Проверка на наличие тренда в ряду динамики может быть осуществлена по нескольким критериям .

1) Метод средних . Изучаемый ряд динамики разбивается на несколько интервалов (обычно на два) , для каждого из которых определяется средняя величина () . Выдвигается гипотеза о существенном различии средних . Если эта гипотеза принимается , то признается наличие тренда .

2) Фазочастотный критерий знаков первой разности (критерий Валлиса и Мура) . Суть его заключается в следующем : наличие тренда в динамическом ряду утверждается в том случае , если этот ряд не содержит либо содержит в приемлемом количестве фазы – изменение знака разности первого порядка (абсолютного цепного прироста).

3) Критерий Кокса и Стюарта . Весь анализируемый ряд динамики разбивают на три равные по числу уровней группы (в том случае , когда число уровней ряда не делится на три , недостающие уровни надо добавить) и сравнивают между собой уровни первой и последней групп .

4) Метод серий . По этому способу каждый конкретный уровень временного ряда считается принадлежащим к одному из двух типов : например , если уровень ряда меньше медианного значения , то считается , что он имеет тип А , в противном случае – тип В. Теперь последовательность уровней выступает как последовательность типов . В образовавшейся последовательности типов определяется число серий (серия – любая последовательность элементов одинакового типа , с обоих сторон граничащая с элементами другого типа).

Если в ряду динамики общая тенденция к росту или снижению отсутствует , то количество серий является случайной величиной , распределенной приближенно по нормальному закону (для n > 10) . Следовательно , если закономерности в изменениях уровней нет , то случайная величина R оказывается в доверительном интервале

 

.

 

Параметр t назначается в соответствии с принятым уровнем доверительной вероятности Р.

Среднее число серий вычисляется по формуле 22 :

 

                                      .                             (22)

 

Среднее квадратическое отклонение числа серий вычисляется по формуле 23 :

 

                                      .                        (23)

 

здесь n -- число уровней ряда .

Выражение для доверительного интервала приобретает вид

 

Полученные границы доверительного интервала округляют до целых чисел , уменьшая нижнюю границу и увеличивая верхнюю .

Непосредственное выделение тренда может быть произведено тремя методами .

1) Укрупнение интервалов . Ряд динамики разделяют на некоторое достаточно большое число равных интервалов . Если средние уровни по интервалам не позволяют увидеть тенденцию развития явления , переходят к расчету уровней за большие промежутки времени , увеличивая длину каждого интервала (одновременно уменьшается количество интервалов) .

2) Скользящая средняя . В этом методе исходные уровни ряда заменяются средними величинами , которые получают из данного уровня и нескольких симметрично его окружающих . Целое число уровней , по которым рассчитывается среднее значение , называют интервалом сглаживания . Интервал может быть нечетным (3,5,7 и т.д. точек) или четным (2,4,6 и т.д. точек).

При нечетном сглаживании полученное среднее арифметическое значение закрепляют за серединой расчетного интервала , при четном это делать нельзя . Поэтому при обработке ряда четными интервалами их искусственно делают нечетными , для чего образуют ближайший больший нечетный интервал , но из крайних его уровней берут только 50%.

Недостаток методики сглаживания скользящими средними состоит в условности определения сглаженных уровней для точек в начале и конце ряда . Получают их специальными приемами – расчетом средней арифметической взвешенной . Так , при сглаживании по трем точкам выровненное значение в начале ряда рассчитывается по формуле 24 :

 

                  .                         (24)

 

Для последней точки расчет симметричен .

При сглаживании по пяти точкам имеем такие уравнения (формулы 25):

 

                               (25)

 

Для последних двух точек ряда расчет сглаженных значений полностью симметричен сглаживанию в двух начальных точках .

Формулы расчета по скользящей средней выглядят , в частности , следующим образом (формула 26):

 

для 3--членной .                            (26)

 

3) Аналитическое выравнивание . Под этим понимают определение основной проявляющейся во времени тенденции развития изучаемого явления . Развитие предстает перед исследователем как бы в зависимости только от течения времени . В итоге выравнивания временного ряда получают наиболее общий , суммарный , проявляющийся во времени результат действия всех причинных факторов . Отклонение конкретных уровней ряда от уровней , соответствующих общей тенденции , объясняют действием факторов , проявляющихся случайно или циклически . В результате приходят к трендовой модели , выраженной формулой 27:

 

                                  ,                                (27)

 

где f(t) – уровень , определяемый тенденцией развития ;

   -- случайное и циклическое отклонение от тенденции.

Целью аналитического выравнивания динамического ряда является определение аналитической или графической зависимости f(t) . На практике по имеющемуся временному ряду задают вид и находят параметры функции f(t) , а затем анализируют поведение отклонений от тенденции. Функцию f(t) выбирают таким образом , чтобы она давала содержательное объяснение изучаемого процесса .

Чаще всего при выравнивании используются следующий зависимости :

линейная  ;

параболическая ;

экспоненциальная 

или ).

1) Линейная зависимость выбирается в тех случаях , когда в исходном временном ряду наблюдаются более или менее постоянные абсолютные и цепные приросты , не проявляющие тенденции ни к увеличению , ни к снижению.

2) Параболическая зависимость используется , если абсолютные цепные приросты сами по себе обнаруживают некоторую тенденцию развития , но абсолютные цепные приросты абсолютных цепных приростов (разности второго порядка) никакой тенденции развития не проявляют .

3) Экспоненциальные зависимости применяются , если в исходном временном ряду наблюдается либо более или менее постоянный относительный рост (устойчивость цепных темпов роста , темпов прироста , коэффициентов роста) , либо , при отсутствии такого постоянства , -- устойчивость в изменении показателей относительного роста (цепных темпов роста цепных же темпов роста , цепных коэффициентов роста цепных же коэффициентов или темпов роста и т.д.).

Оценка параметров () осуществляется следующими методами :

1) Методом избранных точек,

2) Методом наименьших расстояний,

3) Методом наименьших квадратов (МНК)

В большинстве расчетов используется метод наименьших квадратов , который обеспечивает наименьшую сумму квадратов отклонений фактических уровней от выравненных :

.

Для линейной зависимости () параметр обычно интерпретации не имеет , но иногда его рассматривают , как обобщенный начальный уровень ряда ; -- сила связи , т. е. параметр , показывающий , насколько изменится результат при изменении времени на единицу . Таким образом , можно представить как постоянный теоретический абсолютный прирост .

Построив уравнение регрессии , проводят оценку его надежности . Это делается посредством критерия Фишера (F) . Фактический уровень () , вычисленный по формуле 28, сравнивается с теоретическим (табличным) значением :

 

      ,    (28)

 

где k -- число параметров функции , описывающей тенденцию;

n        -- число уровней ряда ;

Остальные необходимые показатели вычисляются по формулам 29 – 31 :

 

                                                             (29)

 

                                     (30)

 

                                         (31)

 

сравнивается с при степенях свободы и уровне значимости a (обычно a = 0,05). Если >, то уравнение регрессии значимо , то есть построенная модель адекватна фактической временной тенденции.

 

 

Анализ сезонных колебаний

Уровень сезонности оценивается с помощью :

1) индексов сезонности ;

2) гармонического анализа.

Индексы сезонности показывают , во сколько раз фактический уровень ряда в момент или интервал времени t больше среднего уровня либо уровня , вычисляемого по уравнению тенденции f(t) . При анализе сезонности уровни временного ряда показывают развитие явления по месяцам (кварталам) одного или нескольких лет . Для каждого месяца (квартала) получают обобщенный индекс сезонности как среднюю арифметическую из одноименных индексов каждого года . Индексы сезонности – это , по либо уровень существу , относительные величины координации , когда за базу сравнения принят либо средний уровень ряда , либо уровень тенденции . Способы определения индексов сезонности зависят от наличия или отсутствия основной тенденции .

Если тренда нет или он незначителен , то для каждого месяца (квартала) индекс рассчитывается по формуле 32:

 

                                                                             (32)

 

где -- уровень показателя за месяц (квартал) t ;

  -- общий уровень показателя .

Как отмечалось выше , для обеспечения устойчивости показателей можно взять больший промежуток времени . В этом случае расчет производится по формулам 33 :

 

                                  (33)

 

где -- средний уровень показателя по одноименным месяцам за ряд лет ;

     Т -- число лет .

При наличии тренда индекс сезонности определяется на основе методов , исключающих влияние тенденции . Порядок расчета следующий :

1) для каждого уровня определяют выравненные значения по тренду f(t);

2) рассчитывают отношения ;

3) при необходимости находят среднее из этих отношений для одноименных месяцев (кварталов) по формуле 34 :

 

              ,(Т -- число лет).            (34)

 

Другим методом изучения уровня сезонности является гармонический анализ . Его выполняют , представляя временной ряд как совокупность гармонических колебательных процессов .

Для каждой точки этого ряда справедливо выражение , записанное в виде формулы 35 :

 

            (35)

 

при t = 1, 2, 3, ... , Т.

Здесь -- фактический уровень ряда в момент (интервал) времени t;

f(t) – выравненный уровень ряда в тот же момент (интервал) t

-- параметры колебательного процесса (гармоники) с номером n , в совокупности оценивающие размах (амплитуду) отклонения от общей тенденции и сдвиг колебаний относительно начальной точки .

Общее число колебательных процессов , которые можно выделить из ряда , состоящего из Т уровней , равно Т/2. Обычно ограничиваются меньшим числом наиболее важных гармоник . Параметры гармоники с номером n определяются по формулам 36 –38 :

 

1) ;                                                                  (36)

 

2)                                                       

                                                                                                  (37)

при n=1,2,...,(T/2 – 1);

 

 

3)                                   (38)

 

 

Дата: 2019-07-30, просмотров: 249.