Оптическая схема лазерного виброметра
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

В основе оптической схемы виброметра лежит классическая схема интерферометра Майкельсона. Базовые структурные элементы оптической системы виброметра (рис.2): лазерный источник монохроматического излучения; телескопическая система, выполняющая функции приемо-передающей "оптической антенны"; оптическая система сопряжения волновых фронтов сигнальной и опорной волны типа "кошачий глаз"; фотоприемные модули балансного типа; оптический делитель-смеситель для формирования и пространственного совмещения опорного и сигнального лазерных пучков. Лазерный виброметр метрологически обеспечен рабочим эталоном единиц параметров вибрации, который разработан совместно с виброметром и также включен в Государственный реестр средств измерений.

Индустриальный датчик вибрации IVS-200

25. Измерение параметров колебаний и вибраций с помощью волоконно-оптических датчиков.

Под волоконно-оптическим измерением температуры (английский вариант DTS = Distributed Temperature Sensing) понимают применение оптоэлектронных приборов для измерения температуры, при которой стеклянные волокна используются в качестве линейных датчиков. Типичными случаями применения линейных волоконных температурных датчиков являются сферы, связанные с безопасностью, например, системы пожарного оповещения в автомобильных, железнодорожных или сервисных туннелях; термический контроль силовых кабелей и воздушных линий передач для оптимизации производственных отношений; повышение эффективности нефтяных и газовых скважин; обеспечение безопасного рабочего состояния промышленных индукционных плавильных печей; контроль герметичности контейнеров с сжиженным природным газом на судах в разгрузочных терминалах; обнаружение утечек на плотинах и запрудах; контроль температуры при химических процессах; обнаружение утечек в трубопроводах.Принцип работы оптоволоконного датчикаФизические воздействия на оптоволокно, такие как: температура, давление, сила натяжения - локально изменяют характеристики пропускания света и как следствие, приводят к изменению характеристик сигнала обратного отражения. В основе измерительных систем на основе оптоволоконных датчиков используется сравнение спектров и интенсивностей исходного лазерного излучения и излучения, рассеянного в обратном направлении, после прохождения по оптоволокну. Волоконно-оптические системы пригодны не только для передачи информации, но и в качестве локальных распределённых измерительных датчиков. Физические величины измерения, например, температура или давление а также сила растяжения могут воздействовать на Стекловолокно и менять свойства световодов в определённом месте. Вследствие гашения света в кварцевых стеклянных волокнах за счёт рассеяния место внешнего физического воздействия может быть точно определено, благодаря чему возможно применение световода в качестве линейного датчик

Рэлеевское и рамановское рассеяние светаДля измерения температуры с помощью световодов, изготовленных из кварцевого стекла, особенно подходит так называемый эффект Рамана. Свет в стеклянном волокне рассеивается на микроскопически малых колебаниях плотности, размер которых меньше длины волны. В отличие от входящего света, обратно рассеянный свет содержит как компоненту с начальной длиной волны (обусловленную эластичным, или рэлеевским рассеянием), так и компоненты, подвергшиеся спектральному сдвигу на частоту, соответствующую резонансной частоте колебаний рассеивающих узлов (комбинационное рамановское рассеяние). Компоненты со смещённой длиной волны образуют в спектре рассеянного света линии-спутники, которые делятся на стоксовы (сдвинуты к большим длинам волн и меньшей частоте) и анти-стоксовы (сдвинуты к меньшим длинам волн и большей частоте)[1]. Амплитуда анти-стоксовой компоненты зависит от локальной температуры.Способы измеренияМинимально достигаемое затухание в стеклянных волокнах ограничивается рассеянием света, вызываемым аморфной структурой стеклянных волокон. Нагрев вызывает усиление колебаний решётки в молекулярном комплексе кварцевого стекла. Когда свет падает на эти термически возбужденные колебания молекул, происходит взаимодействие частиц света (фотонов) и электронов молекул. В стекловолоконном материале возникает упругое (рэлеевское) рассеяние, а также дополнительное, значительно более слабое рассеяние света, так называемое комбинационное рамановское рассеяние, которое по отношению к падающему свету спектрально смещено на величину резонансной частоты колебания решётки.Комбинационное рамановское рассеяние значительно (на три порядка) слабее рэлеевского, поэтому оно не может быть измерено с помощью техники OTDR. Измерение локальной температуры в любом месте световода следует из отношения интенсивности анти-стоксового и стоксового света. Благодаря оптическому методу обратного комбинационного рассеяния можно измерять температуру вдоль стеклянного волокна, как функцию места и времени.

 

 

Дата: 2019-07-24, просмотров: 245.