Природная устойчивость каучука
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Степень микробиологического повреждения каучуковых изделий зависит от многих факторов, из которых главные:

- сопротивляемость отдельных компонентов, т. е. основного каучукового полимера и добавок (например, ускорителей, вулканизаторов и т. д.);

- способ обработки сырых смесей и взаимодействие компонентов смеси во время обработки;

- внешние условия (температура, влажность, микробиологическая активность).

Следует отметить, что на основании изучения отдельных компонентов нельзя заранее предвидеть устойчивость изделий из каучука. Единственным надежным испытанием является проверка конечного изделия. Так, например, известно, что на неопрене-сырце плесени не развиваются, готовые же изделия из неопрена плесневеют. Некоторые смеси не плесневеют в невулканизованном состоянии, а после вулканизации рост плесени на них довольно интенсивный [2].

Рассмотрим природную устойчивость отдельных компонентов и поведение их в резине в различных сочетаниях.

Чистый природный каучук. Уже тот факт, что каучук, вырабатываемый многими растениями, не накапливается в природе, говорит о том, что он подвержен микробиологическому распаду. Установено [1], что чистый природный каучук значительно быстрее окисляется бактериями, чем большинство изделий на его основе. Они объясняют это тем, что в изделиях из каучука молекулы связаны с добавляемыми веществами - и потому более устойчивы к бактериям, - и что некоторые из добавляемых компонентов обладают бактериостатичностью.

Основные полимеры синтетического каучука. Взгляды на устойчивость чистых полимеров, образующих основу синтетического каучука, по литературным данным расходятся между собой. Блейк [1] считает, что основной компонент синтетического каучука инертен и микроорганизмы разрушают лишь годные для питания компоненты, беспорядочно разбросанные в инертном материале. Высказываются другие предположения [2] о подверженности разрушению микроорганизмами основного углеводородного полимера синтетического каучука. Согласно этим данным, ненасыщенные углеводороды разрушаются микроорганизмами значительно легче, чем насыщенные соединения, длинные цепи более уязвимы, чем короткие, и склонность к окислению также зависит от числа боковых цепей; изосоединения обычно легче окисляются бактериями, чем углеводороды нормального строения. Многие виды невулканизованного синтетического каучука в сочетании с противостарителями и антиоксидантами подвержены бактериальному распаду.

Вулканизаторы. Из вулканизующих агентов самый важный - сера. По-видимому, вулканизация уменьшает склонность каучука к плесневе-нию, так как чистый каучук [1, 2] легче окисляется бактериями, чем сырая смесь или вулканизованные изделия.

Ускорители вулканизации. В качестве ускорителей вулканизации применяются органические основания, нитрозосоединения, гуанидины, альдегидамины и соединения, содержащие группу –С-S-. В соединения этого типа входят дитиокарбаматы, тиурамдисульфиды, тиураммоносульфиды, ксантаты, производные дитио- и тритиокислот, тиоазоловые ускорители и др.

В резине содержится от 1 до 5% ускорителей. В числе названных ускорителей некоторые обладают фунгицидными и бактерицидными свойствами, например, диметилдитиокарбамат цинка, диметилдитиокарбамат свинца, дибутилдитиокарбамат цинка, дибутилдитиокарбамат натрия, меркаптобензтиазол, его цинковая соль, бензтиазолдисульфид, тетраметилтиурамдисульфид, диатодилгуанидин и др.

До настоящего времени мало работ, характеризующих эффективность действия этих соединений в связанном с каучуком состоянии.

Биери [2] показал, что значительной устойчивостью к плесневению обладает бутилкаучук, вулканизованный тетраметилтиурамдисульфидом, и что это свойство вызывается именно его присутствием.

Противостарители, ингибиторы и антиоксиданты. В качестве таких компонентов смесей в промышленности применяются воски, фенолы, первичные ароматические амины, аминофенолы, фенолоаминовые соли, альдегидамины, вторичные алкилариламины, замещенные дифениламины, вторичные нафтиламины, бензимидазолы и другие вещества.

Хотя эти соединения предотвращают самоокисление резины, а некоторые антиокислители обладают гербицидными свойствами, они не препятствуют росту микроорганизмов, по-видимому, вследствие малой концентрации и характера их связи с каучуком. Гелиозон (специальный вид углеводородного воскоподобного вещества) сильно плесневеет, легко образует налеты на поверхности резины и способствует значительному обрастанию резины плесенью.

Мягчители. В качестве мягчителей применяются стеариновая кислота, смолы, растительные и минеральные масла и т. п. Воски, например азокерит и парафин, применяются для изоляции кабелей. Каменноугольная смола используется в производстве резиновой обуви.

Парафиновый воск плесневеет очень быстро. Поэтому при наличии большого содержания парафина в резине наблюдается склонность ее к микробиологическому повреждению.

Пигменты и наполнители. Для резины применяются следующие пигменты и наполнители: сажа (газовая и ламповая), окись цинка, основной карбонат магния, некоторые глины, мел, окись железа, хромат цинка, окись свинца, окись титана, литопон, тяжелый шпат, берлинская лазурь, слюда, металлы, балата, гуттаперча, текстиль, шерсть и др.



Рост грибов на каучуке

 

Aspergillus versicolor . Через неделю обнаруживается рост с нормальными, но редкими конидиальными головками. Через 3 недели рост усилился лишь незначительно. После удаления мицелия черная резина в местах роста имела серый цвет.

Aspergillus violaceofuscus . Очень слабая низкая поросль, конидиальные-головки мало развиты. После удаления с поверхности изменение цвета не обнаруживается.

Aspergillus restrictus. Через 14 дней обнаруживается слабый рост белых нитей на границе инфекции, а через 3 недели происходит спорообразование. Через 6 недель колонии несколько расширились и спорообразование увеличилось. После удаления поросли цвет резины несколько светлее.



Коррозия пластмасс

Дата: 2019-07-24, просмотров: 174.