Полупроводниковые наноструктуры
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Кафедра общей физики

Курсовая работа

Полупроводниковые наноструктуры

Пенза 2008



Содержание

 

Введение.

Глава 1. Квантовые ямы

1.1 Технология изготовления квантовых ям

1.2 Особенности энергитических уровней

1.3 Применение квантовых наноструктур в электронике

Глава 2. Квантовые проволоки, нити

2.1 Квантовая проволока

2.2 Особенности квантовых проволок

2.3 Квантовые нити. Изготовление квантовых нитей

Глава 3. Квантовые точки

3.1 Технология изготовления квантовых точек

3.2 Особенности квантовых точек

Глава 4. Сверхрешётки

4.1 Сверхрешётки. Виды сверхрешеток

4.2 Физические свойства сверхрешеток

4.3 Технология изготовления сверхрешеток

4.4 Энергетическая структура полупроводниковых сверхрешеток

4.5 Исследование полупроводниковых сверхрешеток

4.6 Применение сверхрешеток в электронике

Заключение

Список литературы



Введение

 

В первой половине 50-х годов XX в перед Физико-техническим институтом им. А.Ф. Иоффе была поставлена задача создать отечественные полупроводниковые приборы для внедрения в отечественную промышленность. Перед лабораторией стояла задача: получение монокристаллов чистого германия и создание на его основе плоскостных диодов и триодов. При участии Алфёрова Жореса Ивановича были разработаны первые отечественные транзисторы и силовые германиевые приборы. Открытие Ж.И. Алфёровым идеальных гетеропереходов и новых физических явлений – «суперинжекции», электронного и оптического ограничения в гетероструктурах – позволило также кардинально улучшить параметры большинства известных полупроводниковых приборов и создать принципиально новые, особенно перспективные для применения в оптической и квантовой электронике.

В начале 90-х годов одним из основных направлений работ, проводимых под руководством Ж.И. Алфёрова, становится получение и исследование свойств наноструктур пониженной размерности: квантовых проволок и квантовых точек.

В 1993-1994 годах впервые в мире реализуются гетеролазеры на основе структур с квантовыми точками – «искусственными атомами». В 1995 году Ж.И. Алфёров со своими сотрудниками впервые демонстрирует инжекционный гетеролазер на квантовых точках, работающий в непрерывном режиме при комнатной температуре. Принципиально важным стало расширение спектрального диапазона лазеров с использованием квантовых точек на подложках GaAs. Таким образом, исследования Ж.И. Алфёрова заложили основы принципиально новой электроники на основе гетероструктур с очень широким диапазоном применения, известной сегодня как «зонная инженерия».



Глава 1. Квантовые ямы

Глава 2. Квантовые проволоки, нити

Квантовые проволоки

Квантовыми проволоками называют структуры толщиной всего в один атом. Специалисты из исследовательского центра IBM Н.Д. Ланг и П. Авурис выполнили теоретический расчет проводимости квантовой проволоки, состоящей из атомов углерода. Согласно их вычислениям, проводимость квантовой проволоки при увеличении ее длины изменяется не монотонно, а колеблется. Она достигает максимумов для проволоки, состоящей из четного числа атомов, поскольку в этом случае больше число допустимых электронных состояний. В Японии. Х. Ониши и его коллеги из Токио создали квантовую проволоку из атомов золота между иглой сканирующего туннельного микроскопа и поверхностью золотого образца. При увеличении расстояния между иглой и поверхностью проволока становится длиннее и тоньше. Проводимость проволоки при ее растяжении изменялась скачками на квантовую единицу проводимости 2e2/h. Такое же скачкообразное изменение проводимости наблюдалось и в университете Лейдена (Нидерланды). Созданная там квантовая проволока представляла собой микроскопический мост между двумя концами надломленной золотой проволоки.

Глава 3. Квантовые точки

Особенность квантовых точек

 

В квантовой точке движение ограничено в трех направлениях и энергетический спектр полностью дискретный, как в атоме. Поэтому квантовые точки называют еще искусственными атомами, хотя каждая такая точка состоит из тысяч или даже сотен тысяч настоящих атомов. Размеры квантовых точек (можно говорить также о квантовых ящиках) порядка нескольких нанометров. Подобно настоящему атому, квантовая точка может содержать один или несколько свободных электронов. Если один электрон, то это как бы искусственный атом водорода, если два – атом гелия и т.д.

Кроме простого нанесения рисунка на поверхность полупроводника и травления для создания квантовых точек можно использовать естественное свойство материала образовывать маленькие островки в процессе роста. Такие островки могут, например, самопроизвольно образоваться на поверхности растущего кристаллического слоя.

В последнее время во многих лабораториях мира ведутся работы по созданию лазеров на квантовых точках.



Глава 4. Сверхрешётки

Заключение

 

На основе предложенных в 1970 году Ж.И.Алфёровым и его сотрудниками идеальных переходов в многокомпонентных соединениях InGaAsP созданы полупроводниковые лазеры, работающие в существенно более широкой спектральной области, чем лазеры в системе AIGaAs. Они нашли широкое применение в качестве источников излучения в волоконно-оптических линиях связи повышенной дальности.

В России (впервые в мире) было организовано крупномасштабное производство гетероструктурных солнечных элементов для космических батарей. Одна из них, установленная в 1986 году на космической станции «Мир», проработала на орбите весь срок эксплуатации без существенного снижения мощности.

Прошло более 30 лет с тех пор, как началось изучение квантовых эффектов в полупроводниковых структурах. Были сделаны замечательные открытия в области физики низкоразмерного электронного газа, достигнуты поразительные успехи в технологии, построены новые электронные и оптоэлектронные приборы. И сегодня в физических лабораториях активно продолжаются работы, направленные на создание и исследование новых квантовых структур и приборов, которые станут элементами больших интегральных схем, способных с высокой скоростью перерабатывать и хранить огромные объемы информации. Возможно, что уже через несколько лет наступит эра квантовой полупроводниковой электроники.



Список литературы

1. Эсаки Л. Молекулярно-лучевая эпитаксия и развитие технологии полупроводниковых сверхрешеток и структур с квантовыми ямами.- В кн: Молекулярно-лучевая эпитаксия и гетероструктуры.: Пер. с англ./Под ред. Л. Ченга, К Плога.- М.: Мир, 1989.- с. 7 – 36.

2. Херман М. Полупроводниковые сверхрешетки.- М.: Мир, 1989.- 240 с.

3. Силин А.П. Полупроводниковые сверхрешетки // Успехи физических наук. – 1985. - т.147, вып. 3.- C. 485 - 521.

5. Бастар Г.. Расчет зонной структуры сверхрешеток методом огибающей функции.- В кн: Молекулярно-лучевая эпитаксия и гетероструктуры / Под ред. Л. Ченга, К. Плога.- М.: Мир, 1989.- С. 312 –347.

6. Цанг В.Т. Полупроводниковые лазеры и фотоприемники, полученные методом молекулярно-лучевой эпитаксии.- В кн: Молекулярно-лучевая эпитаксия и гетероструктуры / Под ред. Л. Ченга, К. Плога.- М.: Мир, 1989.- С. 463 –504.

Кафедра общей физики

Курсовая работа

Полупроводниковые наноструктуры

Пенза 2008



Содержание

 

Введение.

Глава 1. Квантовые ямы

1.1 Технология изготовления квантовых ям

1.2 Особенности энергитических уровней

1.3 Применение квантовых наноструктур в электронике

Глава 2. Квантовые проволоки, нити

2.1 Квантовая проволока

2.2 Особенности квантовых проволок

2.3 Квантовые нити. Изготовление квантовых нитей

Глава 3. Квантовые точки

3.1 Технология изготовления квантовых точек

3.2 Особенности квантовых точек

Глава 4. Сверхрешётки

4.1 Сверхрешётки. Виды сверхрешеток

4.2 Физические свойства сверхрешеток

4.3 Технология изготовления сверхрешеток

4.4 Энергетическая структура полупроводниковых сверхрешеток

4.5 Исследование полупроводниковых сверхрешеток

4.6 Применение сверхрешеток в электронике

Заключение

Список литературы



Введение

 

В первой половине 50-х годов XX в перед Физико-техническим институтом им. А.Ф. Иоффе была поставлена задача создать отечественные полупроводниковые приборы для внедрения в отечественную промышленность. Перед лабораторией стояла задача: получение монокристаллов чистого германия и создание на его основе плоскостных диодов и триодов. При участии Алфёрова Жореса Ивановича были разработаны первые отечественные транзисторы и силовые германиевые приборы. Открытие Ж.И. Алфёровым идеальных гетеропереходов и новых физических явлений – «суперинжекции», электронного и оптического ограничения в гетероструктурах – позволило также кардинально улучшить параметры большинства известных полупроводниковых приборов и создать принципиально новые, особенно перспективные для применения в оптической и квантовой электронике.

В начале 90-х годов одним из основных направлений работ, проводимых под руководством Ж.И. Алфёрова, становится получение и исследование свойств наноструктур пониженной размерности: квантовых проволок и квантовых точек.

В 1993-1994 годах впервые в мире реализуются гетеролазеры на основе структур с квантовыми точками – «искусственными атомами». В 1995 году Ж.И. Алфёров со своими сотрудниками впервые демонстрирует инжекционный гетеролазер на квантовых точках, работающий в непрерывном режиме при комнатной температуре. Принципиально важным стало расширение спектрального диапазона лазеров с использованием квантовых точек на подложках GaAs. Таким образом, исследования Ж.И. Алфёрова заложили основы принципиально новой электроники на основе гетероструктур с очень широким диапазоном применения, известной сегодня как «зонная инженерия».



Глава 1. Квантовые ямы

Дата: 2019-07-24, просмотров: 268.