Влияние условий проведения реакции на процесс полимеризации .
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Основные параметры процесса полимеризации, а именно об­щая скорость процесса, стереоизомерный состав полимера и его молекулярный вес, зависят от химической и физической природы катализатора, полимеризационной среды и физических условий, а также степени чистоты отдельных компонентов системы и их кон­центрации.

Линейный полиэтилен на таких катализаторах может образо­вываться как в гомогенной, так и в гетерогенной фазе, поскольку он не имеет пространственных изомеров. Для получения же изо-тактического полипропилена предпочитают применять твердые хлориды титана (прежде всего TiCl3) в сочетании с алюминийорганическим компонентом. О роли твердой фазы говорит тот факт, что в присутствии каталитического комплекса металлорганического соединения с переходным металлом, адсорбированного на аморфном носителе, при полимеризации пропилена образуется атактический аморфный продукт. Тот же комплекс, адсорбирован­ный на кристаллическом носителе (треххлористый титан), позво­ляет получить изотактический полимер . Следует отметить, что самой по себе регулярности решетки носителя еще недостаточно для того, чтобы катализатор приобрел высокую стереоспецифичность; носитель должен также удовлетворять определенным стерическим условиям, связанным с величиной его ионов и расстоя­нием между ними. Так, в присутствии трехбромистого или трехиодистого титана атактического полимера образуется больше, чем при применении треххлористого титана.

Льюисовский характер обоих каталитических компонентов предопределяет и выбор среды. Наиболее выгодной средой считаются инертные углеводороды. Поскольку треххлористый титан действует как сильный адсорбент, наиболее предпочтительны алифатические углеводороды (гептан, гексан, пропан и т. п.), ко­торые сорбируются в меньшей степени, чем ароматические.

 

 

Влияние концентрации мономера и компонентов катализатора

Из приведенных данных по механизму стереоспецифической полимеризации следует, что активные центры образуются при сорбировании алюминийорганического компонента на поверхности твердой фазы. Поэтому в первую очередь именно этот компонент будет оказывать влияние на скорость образования полимера и его стереорегулярность.

Наибольший выход изотактического полипропилена полу­чается при использовании треххлористого титана с малой удельной поверхностью и хорошо развитыми кристаллами. Однако на таком катализаторе полимеризация протекает медленно. При увеличении удельной поверхности применяемого катализатора одновременно со скоростью реакции возрастает содержание атактической фрак­ции и стереоблоков в полимере, что связано, очевидно, с увеличе­нием дефектов в твердой фазе.

Очевидно, что на изломах и гранях кристаллов мономерные звенья могут присоединяться к растущей цепи из разных положе­ний, вследствие чего образуются аморфные полимеры или—при более специфических условиях—в большей или меньшей степени регулярные стереоблоки (стереоизомерный сополимер). Чем мель­че частицы твердой фазы, тем больше изломов относительно пло­скостей, отличных от обычной плоскости 001 (обозначения индек­сами Миллера), и, как результат, часть поверхности имеет иные геометрические и химические свойства.

Алкилбериллий, содержащий металл с наименьшим ионным радиусом, в присутствии треххлористого титана дает самый высо­кий выход изотактического полипропилена при больших скоростях реакции полимеризации. На степень изотактичности и скорость ре­акции оказывают влияние также стерические и химические свой­ства заместителей металлорганического соединения. При полиме­ризации пропилена в присутствии триметилалюминия образуется полимер с большим содержанием атактической фракции, чем при применении триэтилалюминия. Стереоспецифичностъ, однако, па­дает и при высших алкилах. Если один алкил алюминия заменить на галоген, то скорость реакции снижается в ряду F>Cl>Br>I; в том же порядке увеличивается молекулярный вес. Натта в ре­зультате проведенных опытов по полимеризации пропилена с трех­хлористым титаном в среде толуола пришел к заключению, что стереорегулярность падает в ряду

Аl(С2Н5)2I > Аl(С2Н5)2Вr > Al(С2Н5)2С1 > Аl(С2Н5)2

Алюминийдигалогениды в присутствии треххлористого титана полимеризации уже не инициируют; при введении же в систему соответствующего донора (амины, пиридин) можно получить по­лимер с высокой стереорегулярностью. Донор и металлорганическое соединение лучше всего брать в соотношении 1 :2.

Влияние температуры

Суммарная энергия активации полимеризации пропилена на каталитической системе треххлористый титан — триэтилалюминий равна 14 ккал/моль, причем 4 ккал/моль приходится на долю теплоты растворения мономера в н - гептане .

В отличие от константы скорости молекулярный вес и стереоизомерный состав полимера, полученного на системе треххлори­стый титан—триэтилалюминий, при температурах ниже 80° С изменяются относительно мало. Повышение температуры, способ­ствующее уменьшению молекулярного веса, вызывает также и замет­ное изменение содержания экстрагируемых фракций. Полимеры, синтезированные при 100° С, содержали лишь 3% аморфной фракции . На катализаторе Т1С13-А1(С3Н5)2I и других известных каталитических системах полимеризация проходит с более низкой скоростью, чем в присут­ствии TiCl3 - AIR3 или TiCI3 - BeR3.

Влияние примесей

Оба компонента каталитической системы охотно вступают в реакцию с веществами, в молекуле которых есть атом со свобод­ной электронной парой. В случае триэтилалюминия стремление заполнить недостающую электронную пару на алюминии настоль­ко велико, что это вещество в нормальных условиях существует как димер с довольно большой устойчивостью. Димер энергетиче­ски более устойчив (почти на 10 ккал/моль). Триалкилалюминий образует с донорами комплексные соединения, некоторые из них настолько устойчивы, что их можно перегонять, а попытка разде­лить их на первоначальные компоненты часто приводит к деструк­ции всей молекулы .

Благодаря наличию свободных орбит переходный металл об­разует координационные связи с мономером за счет п-электронов последнего. Подобное взаимодействие имеет место с молекулами, имеющими свободную электронную пару. Соединения, обладающие способностью к координации, покрывают часть активной поверх­ности катализатора, некоторые из них действуют как каталитиче­ские яды и влияют на ход полимеризации и свойства полимера.

Аналогичным действием обладают и ненасыщенные углеводо­роды (пропадиен, ацетилены), которые к тому же не реагируют с триалкилалюминием и сильно сорбируются треххлористым тита­ном. Эти вещества снижают скорость полимеризации и модифици­руют свойства полимера.

Примеси можно разделить на две группы в зависимости от того, действуют ли они как ингибиторы или как промоторы поли­меризации. Сначала рассмотрим соединения с ингибирующими свойствами, часто присутствующие в сырье. При температуре по­лимеризации триалкилалюминий образует с полярными примеся­ми комплексы, которые на дальнейший ход полимеризации не ока­зывают существенного влияния. Примеси, сорбированные на твер­дой фазе, где происходит реакция роста цепи, действуют гораздо интенсивнее. При малых их количествах наблюдаются индукцион­ный период и снижение скорости полимеризации по окончании этого периода . Изменяется и стереоизомерный состав полимера: обычно повышается содержание аморфных и стереоблочных фракций.

Продолжительность индукционного периода определяется теми факторами, от которых зависит скорость удаления сорбированного вещества с поверхности твердой фазы. Примеси, которые слишком сильно сорбированы или из-за стерических затруднений не могут участвовать в реакции роста цепи (в роли сополимера), действуют как сильные ингибиторы процесса полимеризации. Из доноров на­иболее сильными каталитическими ядами являются COS, CS2, R2S, СО, т. е. вещества, известные своим ингибирующим действием и способностью образовывать координационные связи. Из ненасы­щенных углеводородов наиболее эффективным ингибитором счи­тается пропадиен. Ацетиленистые соединения также снижают ско­рость полимеризации. Однако сорбция их треххлористым титаном не настолько сильна, чтобы исключалась возможность сополимеризации. Ацетилен образует с пропиленом сополимеры, которые уже при ничтожных концентрациях ацетилена в системе (10 ч. на I млн.) имеют сине-фиолетовую окраску, свидетельствующую о на­личии сопряженных двойных связей и, следовательно, об образо­вании сополимера с блочной структурой. Метилацетилен цветных сополимеров не дает.

Вторую группу примесей составляют вещества, имеющие ион­ный характер или приобретающие его после сорбции на поверхно­сти твердой фазы. Из доноров значительный интерес представляют вещества, которые способны образовывать ониевые соединения. Наибольшей активностью отличаются соединения на основе азота, такие, как амины, пиридин и т. п. При применении треххлористого титана с малой 2удельной поверхностью (хорошо развитые кри­сталлы) они вдвое повышают скорость реакции уже в концен­трациях 10-4 моль /л, в то время как диэтиловый эфир при прочих равных условиях—всего лишь в 1,3 раза.

Доноры обычно увеличивают молекулярный вес полимера. Исключение составляют вещества, содержащие группу, способную вызвать передачу цепи. По влиянию на величину молекулярного веса активаторы можно расположить, например, в следующий ряд:

H2S < RSH < RSR < CS

Вещества, способные образовывать ониевые соли, уменьшают количество образующегося при полимеризации продукта, раство­римого в холодном и кипящем гептане (аморфные фракции и стереоблоки). Частично, однако, меньшая растворимость в геп­тане обусловлена более высоким молекулярным весом полимера .

Дата: 2019-07-24, просмотров: 274.