Тепловые потери в зданиях и сооружениях
Причиной относительно высокого энергопотребления в зданиях и сооружениях нашей страны по сравнению с зарубежными странами является то, что все существующие здания были построены в соответствии с имевшимися на момент строительства строительными нормами и стандартами, которыми было предусмотрено в 1954-1964 гг. термическое сопротивление 0,75 м2 • К/Вт. Фактическая величина этого показателя в 1954-1962 гг. была несколько ниже, а в 1965-1993 гг. она достигла 1,25 м2 • К/Вт.
С введением в 1994 г. новых норм по термическому сопротивлению стен (а они составляют ныне 2,25 м2 • К/Вт) все ранее построенные здания попали в разряд не соответствующих современным техническим требованиям. Следует отметить, что во время действия этих низких норм по термическому сопротивлению стен осуществлялось строительство панельных зданий массовых серий, а многие из них были построены с отступлением от строительных норм. Низкое качество строительно-монтажных работ привело к тому, что жилищно-эксплуатационные службы из года в год тратят огромные средства на производство постоянных ремонтно-строительных работ главным образом на межпанельных стыках и в местах сопряжения окон с наружной стеной. Кроме того, это обусловливает и значительные потери тепла.
Поэтому в настоящее время все в большей мере практикуется осуществление тепловизионного (с использованием инфракрасной съемки) контроля качества строительно-монтажных работ, что позволяет предотвратить некачественное выполнение работ в местах, в которых возможна наибольшая утечка тепла'.
Теплоснабжение производственных помещений (цехов) всегда считалась задачей неординарной, поскольку они, как правило, занимают огромные площади (от нескольких сотен до нескольких тысяч квадратных метров) и высоту до 14-18 м. Рабочая (обитаемая) зона производственных зданий составляет всего 20-30 % их общего объема, которые и требуют поддержания комфортных условий. Нагрев 70-80 % воздуха, находящегося над рабочей зоной, относятся к прямым потерям. Всем известно, что удержать теплый воздух внизу невозможно и температура его от пола к потолку возрастает на 1,5 °С в расчете на метр высоты. Это значит, что в зданиях высотой 12 м при средней температуре в рабочей зоне 15 °С воздух под крышей оказывается нагретым до 30 °С. Такой перегрев внутреннего воздуха зданий приводит к резкому возрастанию тепловых потерь через наружные ограждения, верхние перекрытия, стены, световые проемы и фонари.
К этому следует добавить и большие затраты энергии на перемещение значительных масс воздуха с помощью вентиляторов, поскольку основным способом отопления производственных помещений являлось воздушное. Отопить даже среднее производственное помещение с помощью водяной или паровой системы весьма проблематично и в большинстве случаев невозможно. Для этого требуются десятки километров трубопроводов, которые перекрывают проходы и создают другие неудобства.
Вместе с удаляемым нагретым воздухом из верхней зоны промышленных зданий с помощью вытяжных крышных вентиляторов выбрасывается большое количество теплоты. Для ее утилизации целесообразно применять крышные приточно-вытяжные установки с теплоутилизаторами.
Значительны потери тепла в производственных зданиях и сооружениях в зависимости от принятого режима работы предприятий в течение суток и дней месяца. Как, правило, большинство из них работают в две смены, а это означает, что количество рабочего времени за отопительный сезон составляет около 5000 часов, из которых собственно рабочими являются не -более 2300 часов, или 44 % календарного времени. Все остальные 2700 часов предприятия вынуждены отапливать здания, в которых никто не работает.
Перевод системы отопления в дежурный режим сложен, малоэффективен и небезопасен из-за возможных резких перепадов температур, создающих угрозу размораживания системы из-за возможных высоких суточных колебаний температуры.
Одним из возможных путей решения проблемы уменьшения тепла на отопление больших производственных зданий может быть децентрализация системы теплоснабжения их по теплоносителю, воде и пару за счет внедрения систем газового лучистого отопления (СГЛО) и газовых воздухонагревателей. Лучистое отопление - это передача тепла от более нагретых поверхностей к менее нагретым посредством инфракрасного излучения. Главной отличительной особенностью этой системы является обогрев помещения с помощью потока лучистой энергии инфракрасного спектра. Поток лучистой энергии, направляемый в расположенный непосредственно над обогреваемой зоной лучистыми обогревателями, не нагревая окружающий воздух, нагревает поверхность пола, установленное оборудование в обслуживаемой зоне и людей. Это принципиальное отличие системы ГЛО от радиационных систем отопления позволяет достигать наиболее полного комфорта для работников.
Перевод отопления зданий по указанной системе требует осуществления определенных организационных и технических решений. Однако проводимая работа по внедрению СГЛО на 140-м ремонтном заводе в Борисове, на
Минском заводе «Ударник» и других предприятиях Беларуси показывают их высокую эффективность. К этому следует добавить, что установки СГЛО уже более 50 лет эксплуатируются за рубежом. В России подобные системы эксплуатируются свыше 10 лет и установлены более чем на 60 предприятиях, в том числе: на таких, как Московский электромеханический ремонтный завод, «Мосгаз», «Рязаньнефтегазстрой», «ЗИЛстроймаш», «КамАЗ» и др.1
Для снижения затрат теплоты на нагрев воздуха, поступающего через проемы в стенах общественных зданий, а также для многоэтажных жилых домов применяют воздушно-тепловые завесы. Во многих случаях целесообразно устройство тамбура.
Тепловая изоляция зданий и сооружений
Проблеме получения теплых и, соответственно, энергосберегающих конструкций в последние годы в нашей стране уделяется все больше внимания. Они должны быть, во-первых, прочными, жесткими и воспринимать нагрузки, то есть быть несущей конструкцией, а во-вторых, должны защищать внутреннее пространство от дождя, жары, холода и других атмосферных воздействий, то есть обладать низкой теплопроводностью, быть водостойкими и морозоустойчивыми.
В природе не существует материала, который удовлетворял бы двум этим требованиям. Для жестких конструкций идеальным материалом является металл, бетон или кирпич. Для утепления годится только эффективный утеплитель, например, каменная вата. Поэтому для того, что бы ограждающей конструкция была прочной и теплой, используют композицию или комбинацию как минимум двух материалов - конструкционного и теплоизоляционного.
Композиционная ограждающая конструкция в свою очередь может быть представлена в виде нескольких отличных друг от друга систем и конструкций:
1 Жесткий каркас с заполнением межкаркасного пространства эффективным утеплителем.
2 Жесткая ограждающая конструкция (например, кирпичная или бетонная стена), утепленная со стороны внутреннего помещения, или так называемое внутреннее утепление.
3 Две жесткие пластины и эффективный утеплитель между ними, например, «колодезная» кирпичная кладка, железобетонная панель «сэндвич» и т.д.
4 Тонкая ограждающая конструкция (стена) с утеплителем с внешнейстороны, так называемое внешнее утепление.
Теплоизоляционные системы, применяемые для наружной теплоизоляции, подразделяются на системы:
- с тонкими штукатурными и накрывочными слоями;
- с толстыми штукатурками (до 30 мм);
- «сухой теплоизоляции» (система утепления «на относе»); -монолитной теплоизоляции (утепление пенополиуретаном, покрытие «термошиль-дом»);
- из ячеистого бетона с объемной массой ниже 400 кг/м3.
Применение той или иной системы определяется конструктивными особенностями модернизируемого здания и технико-экономическими расчетами, основанными на приведенных затратах, так как стоимость утепления 1 м2 наружной стены колеблется от 15 до 50 долларов США без учета стоимости заполняемых оконных блоков, модернизации систем вентиляции и отопления. Тем не менее, потенциал энергосбережения при эксплуатации существующего жилого фонда достаточно велик и составляет около 50 %'.
Каждая из этих конструкций имеет свои достоинства и недостатки, и выбор ее зависит от многих факторов, исходя из местных условий. Но из всех названных конструкций четвертый тип утепления здания с внешней стороны хотя и имеет недостатки, но и обладает следующими достоинствами:
1 Надежная защита от неблагоприятных внешних воздействий суточных и сезонных температурных колебаний, которые ведут к неравномерным деформациям стен, что приводит к образованию трещин, раскрытию швов, отслоению штукатурки.
2 Невозможность образования какой-либо поверхностной флоры на поверхности стены из-за избытка влажности, образования льда в толще стены, который имеет место из-за конденсационной влаги, поступающей из внутренних помещений, и влаги, проникшей внутрь массива ограждающих конструкций из-за повреждения поверхностного защитного слоя.
3 Препятствование охлаждению массива ограждающей конструкции до температуры точки росы и, соответственно, выпадению конденсата на внутренних поверхностях.
4 Снижение уровня шума в изолируемых помещениях.
5 Отсутствие зависимости температуры воздуха во внутренних помещениях от ориентации здания, то есть от нагрева поверхностей солнцем и охлаждения этих же поверхностей ветром, и др.
Для устранения теплопотерь в ранее построенных зданиях разработаны и осуществляются различные проекты теплотехнической реконструкции и утепления их. Одним из таких проектов является устройство термо-шубы, представляющей собой многослойную конструкцию. Она состоит из следующих элементов:
а) плит утеплителя, прикрепленных к подготовленной поверхности стен клеящим составом «сармалеп» и дюбелями для укрепления утеплителя;
б) защитного покрытия из клеящего состава «сармалеп», армированногоодним или двумя слоями сетки в сочетании с защитными алюминиевымипрофилями с перфорированными стенками;
в) отделочного покрытия:
I) из штукатурного состава «сармалит» белого цвета без окраски либо с последующей окраской микропористой фасадной краской на основе плиолитовой смолы «сафрамап»;
2) защитно-отделочной композиции «сафрамап», окрашенной в массе;
3) микропористой фасадной краски на основе плиолитовой смолы«сафрамап» непосредственно по защитному покрытию из состава клеящего«сармалеп-М».
«Термошуба» устраивается по наружным стенам разной конструкции, из различных материалов (кроме деревянных) и с разной отделкой фасадной поверхности и соответствует требованиям пожарной и экологической безопасности. В качестве материалов для термошубы применяют:
- плиты утеплителя двух типов: пенополист и рольные ПСБ-С (с антиперенами) по ГОСТ 155.88 размером 500 х 1000 мм, толщиной от 40 до 120 мм (в соответствии с проектной документацией). При этом пенополистирол должен быть выдержан не менее двух месяцев с момента изготовления; плиты минераловатные специальные фасадные жесткие на синтетическом связующем, недорогие, экологически чистые, гидрофобные. Размеры их такие же, как и размеры обычных минераловатных;
- клеящие и защитные составы «сармалеп-Т» или «сармалеп-М», приготавливаемые на строительной площадке смешиванием «смеси клеевой полиминеральной сармалеп» с водой. Состав «сармалеп-М» - морозостойкий при температуре окружающего воздуха от -12 до 10 °С;
- штукатурный состав, приготавливаемый на строительной площадке смешиванием смеси штукатурной полиминеральной с водой, либо защитно-отделочную композицию «софрамап-В (Г)» или «софромап-ВМ (ГМ)». Для получения цветных поверхностей гарантированного качества рекомендуется наносить отдельные слои белого цвета, а затем покрывать его микропористой фасадной краской «софрамап»;
- защитные алюминиевые профили;
- сетку стеклянную ССШ-160 для армирования защитного покрытия; -дюбели для укрепления утеплителя, а для защиты от механических повреждений по низу теплоизоляции и на углах здания и проемов - алюминиевые профили с перфорированной стенкой толщиной от 0,5 до 1,0 мм.
Кроме «термошубы» утепление стен зданий и сооружений с наружной стороны можно выполнить устройством на фасаде здания каркаса, в который вставляются и фиксируются в нем плиты утеплителя, а поверх каркаса навешиваются облицовочные панели (сухая штукатурка) или выполненная на некотором расстоянии кирпичная кладка. При этом внутри конструкции, между утеплителем и облицовкой, сохраняется зазор, по которому свободно циркулирует воздух. Этот воздух удаляет влагу, испаряющуюся из помещения сквозь стены, не давая ей задерживаться в утеплителе. I [случается, что фасад вместе с утеплителем «дышит», дышит и стена. Л утеплитель все время сухой, и его теплоизолирующая способность постоянно сохраняется на высоком уровне. Преимуществами этог o способа теплоизоляции являются: во-первых, всепогодная технология, отсутствие «мокрых» процессов вроде нанесения штукатурки, клеев и т. д.; во-вторых, неограниченный выбор вариантов облицовки: панели разного размера, из разных материалов и с разными текстурами и расцветками. Добавить в список преимуществ можно высокую шумоизолирующую способность вентфасада, легкость и технологичность монтажа, быстроту и простоту транспортировки на объект необходимых материалов. Система вентилируемого утепленного навесного фасада не позволяет конденсату скапливаться на поверхности или внутри стены, благодаря чему повышается срок службы ограждающих конструкций здания и уменьшаются теплопотери через них.
Дата: 2019-07-24, просмотров: 185.