ИЗМЕРЕНИЕ УРОВНЯ С ПОМОЩЬЮ РАДИОАКТИВНЫХ ИЗОТОПОВ
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Область применения

Измерение уровня при помощи радиоактивных изотопов целе­сообразно прежде всего там, где вследствие наличия специфиче­ских условий, а именно: высокого давления, разреженности, агрес­сивности среды — нельзя использовать обычные приборы.[2] Этот способ используют для измерения уровня заполнения резервуа­ров, силосных башен и бункеров, где нельзя установить измери­тельные щупы или необходимо применение дорогостоящей системы измерительных щупов, вызванное конструктивными особенно­стями. Но и в тех случаях, когда правила техники безопасности запрещают установку уровнемеров в резервуарах или когда уста­новка обычных приборов потребовала бы больших затрат, для измерений часто выгодно оказывается использовать радиоактивные изотопы. Особенно целесообразно применять радиоактив­ные изотопы для измерений уровня агрессивных материалов, веществ с повышенной адгезионной способностью, в резервуарах с очень высокими температурами, в резервуарах со встроенными мешалками, в бункерах с такими крупнокусковыми материалами, как уголь или руда, в шахтных печах, в литейном производстве и на металлургических заводах.

Физические основы

В основе измерения при помощи искусственных радиоактивных изотопов лежит принцип поглощения радиоактивного излучения соответствующим материалом, содержащимся в резервуаре. Пучок γ-лучей, излучаемый радиоактивным источником, проникает через резервуар по прямой линии (рис. 3). На стенке резервуара, лежащей против излучателя, расположен приемник, преобразую­щий принятые лучи в электрические импульсы. Вследствие по­глощения радиоактивных лучей материалом внутри резервуара интенсивность принятого излучения зависит от высоты уровня.

Рис. 3 . Схема радио­активного сигнализатора уровня:

1 - излучатель; 2 - при­емник

Возникающие на выходе приемника им­пульсы, частота которых пропорциональна интенсивности излучения, подводятся к пе­реключающему устройству, реле которого срабатывает, как только число импульсов в единицу времени достигнет минимальной величины. Ввиду того что в большинстве случаев измеряют толстые слои материала, используют преимущественно γ -лучи. Большое влияние на процесс измерения оказывают стенки резервуара, обладающие иногда значительной толщиной. Исходную интенсивность прони­кающего через заполненный резервуар излучения рассчитывают следующим образом:

При пустом резервуаре она равна . Таким об­разом, отношение величин интенсивности

где dw, — толщина стенки резервуара; pi — плотность содержи­мого; di — внутренний диаметр резервуара; μ — массовый коэф­фициент поглощения; рw — плотность материала стенки.

Такое же выражение имело бы место и для теоретического случая, когда стенки отсутствуют, т. е. толщина и плотность стенки не оказывают влияния на ослабление. Однако необходимо учитывать, что при наличии металлических стенок большой тол­щины происходит рассеяние, оказывающее заметное влияние на направление и интенсивность излучения. В принципе для толстых стенок необходимо использование радиоактивного препарата более высокой энергии. Для того чтобы практически иметь дело по воз­можности со слабыми препаратами и, следовательно, с минималь­ной радиационной защитой, расстояние между излучателем и при­емником должно быть минимальным. В доменных печах, вагран­ках, шахтных известковообжигательных печах, например, этого можно достичь благодаря уменьшению толщины стенки в местах установки излучателя и приемника путем применения трубок, заделанных с переднего конца. Кроме того, можно приобрести также излучатели с двойной защитной оболочкой. Такая оболочка, состоящая обычно из высококачественной стали, предотвращает рассеяние радиоактивного материала и тем самым загрязнение окружающей среды радиоактивными веществами.

Ослабление мощности излучения радиоактивного излучателя вследствие поглощения воздухом происходит по квадратичному закону. Степень поглощения радиоактивного излучения твердыми и жидкими материалами зависит в первую очередь от их плот­ности.

Измерение уровня

При ступенчатом измерении уровня посредством радиоактивных изотопов можно использовать различные варианты размещения излучателей (рис.4). Существует возможность сигнализации предельного уровня или измерения ступенями с большей или меньшей дискретностью. В показанном на рис. 4, а варианте расположения использован один изотоп, испускающий два пучка лучей. Расположенные на пути прохождения лучей счетчики ра­диоактивного излучения соединены параллельно. Как видно из графика,

 

Рис. 4 . Наиболее распространенные варианта расположения излучателей

превышение пределов hmax и hmin вызывает резкое из­менение частоты повторения импульсов, которое можно исполь­зовать для включения реле. Почти непрерывная индикация уровня достигается путем размещения друг над другом нескольких из­лучателей, как показано на рис. 10, г. В этом случае представ­ляется возможным измерять уровень до высоты, равной утроен­ному диаметру резервуара.

На диаграмме показано, что индикация носит приблизительно непрерывный характер. Бесступенчатой графической характе­ристики можно достичь, если применить стержневидный пре­парат проф. Бергольда. Ввиду того что мощность препарата на концах стержня усилена, превышение минимального и максималь­ного уровня заполнения (рис. 10, г) выявляется особенно

четко. Целесообразно в этом случае применять реле. При помощи такого метода можно производить измерение высоты до 3 м. Вариант непрерывного измерения показан на рис. 10, б, Здесь счетчики радиоактивных излучений устанавливают верти­кально. Благодаря расположению в ряд параллельно включенных счетчиков диапазон измерения можно увеличить приблизительно до 1,2 м. Другим решением, также пригодным для измерения вы­соких уровней, является метод измерения со следящим управ­лением (рис. 10, д),

Выводы

Измерение уровня при помощи радиоактивных изотопов обла­дает тем преимуществом, что этот метод является бесконтактным. Посредством этого метода можно измерять уровень заполнения резервуара даже в исключительно сложных условиях. Таким образом, обеспечивается высокая эксплуатационная надежность установки, ее износ и ремонтные работы невелики, что приводит к снижению расходов. Точность измерения около 2 %. При не­прерывных измерениях следует принимать во внимание период полураспада используемого радиоактивного изотопа.

При использовании аппаратуры для контроля уровня металла в квадратных кристаллизаторах источник и приемник излучения размещаются стационарно вне кристаллизатора. На мощных слябовых МНЛЗ источник и приемник размещаются непо­средственно в стенке кристаллизатора в специальных приливах. С помощью термо­стойкого кабеля приемник излучения через соединительную коробку соединен с из­мерительным прибором типа В 3118, который является интегрирующим накопителем импульсов с последующим преобразованием сигнала интегратора в унифицированный сигнал 0-10 В и 0-5 мА. Прибор рассчитан на работу с потоком импульсов 450-9000 имп/с, интегратор позволяет накапливать их с постоянной времени.

Измерение уровня металла в крис­таллизаторе посредством измерительного устройства, работающего на основе радиоактивности

В большинстве случаев фактический уровень металла в крис­таллизаторе определяют посредством измерительного устройства, работающего на основе радиоактивности. Другие измерительные устрой­ства, например, термоэлементы, устанавливаемые в стенке кристал­лизатора, не нашли широкого применения из-за присущих им недостат­ков.[2]

Радиоактивное измерительное устройство состоит из стержневидного препарата кобальта 60, сцинтилляционного счетчика и специального усилителя. Источники радиоактивного излучения и счет­чики размещают на кристаллизаторе таким образом, чтобы через учас­ток, на котором в процессе разливки стали должен установиться ее уровень, могли проходить и улавливаться счетчиком радиоактивные изотопы, поступающие от источника их излучения (рис.5).

 

Рис. 5 . Система непрерывного измерения уровня металла в крис­таллизаторе и принцип "шлакового барьера":

1 - промежуточный ковш; 2 - стопор; 3 - наивысший уровень стали; 4 - минимальный уровень стали в кристаллизаторе; 5 - участок из­мерения; б - источник радиоактивного излучения - кобальт 60; 7 - сцинтилляционный счетчик; 8 - стержне видный источник радио­активного излучения (кобальт 60) для непрерывного измерения уров­ня металла в кристаллизаторе; 9 - точечный источник радиоактив­но излучения (кобальт 60) для измерения предельных величин (здесь "шлаковый барьер"); 10 - кристаллизатор для литья слябов; (вид сверху); S- подъем кристаллизатора; U- напряжение

Толщина и плотность просвечиваемого материала определяют степень поглощения радиоактивного излучения и, следовательно, число изотопов, улавливаемых счетчиком. При повышении или пони­жении уровня стали на участке измерения его высоты в кристаллизаторе происходит большее или меньшее перекрытие радиоактивного из­лучения и вместе с тем изменение числа гамма-квантов, улавливае­мых счетчиком. Следовательно, количество попадающих на счетчик гамма-квантов служит мерой высоты уровня жидкой стали в кристал­лизаторе.

Гамма-кванты, достигающие счетчика, вызывают световые вспышки во вмонтированном кристалле йодистого натрия, частота которых пропорциональна интенсивности проходящего радиоактивного излучения. Вместе с кристаллом находится оптически подрегулированный фотоэлектронный умножитель, в светочувствительной части которого световые вспышки вызывают образование вторичных элект­ронов. Затем в результате работы специальных умножителей, усилителей и преобразователей полного сопротивления получаются соот­ветствующие импульса.

Эти импульсы, стандартизованные, прообразованные и усилен­ные в счетчике, по специальному кабелю передаются в главней уси­литель, которой преобразует их в постоянное напряжение или силу тока, пропорциональные высоте уровня металла в кристаллизаторе.

Так как каждый радиоактивный процесс подвержен статическим колебаниям, полученную таким образом измеренную величину нельзя использовать без дальнейшей, обработки. Эту обработку выполняют  специальные фильтры.

При проектировании таких измерительных устройств необходи­мо учитывать два противоположных требования.

Мощность источника излучения при порожнем кристаллизаторе должна обеспечивать около 4000-6000 импульсов в секунду, так как при этом наблюдаются меньшие статические колебания.

Мощность источника излучения должна быть такой малой, чтобы по возможности не создавалась или создавалась весьма небольшая контролируемая зона; при этом прежде всего учитывают опасность для здоровья обслуживающего персонала.

Оба эти требования учитываются при компромиссном решении, заключающемся в выборе мощностей источников радиоактивного излучения, обеспечивающих около 3000 импульсов в секунду для машин непрерывного литья заготовок квадратного сечения и около 1500 им­пульсов в секунду для слябовых МНЛЗ.

 Измерительное устройство, должно достигать этих мощностей излучения после половины продолжительности периода полураспада кобальта 60 при порожнем кристаллизаторе (период полураспада кобальта 60 составляет 5,3 года). Далее необходимо следить за тем, чтобы источник радиоактивного излучения был размещен на кристалли­заторе или внутри него так, чтобы при установленной в процессе эксплуатации заданной высоте уровня металла в кристаллизаторе еще проходило бы около 60% импульсов, чтобы получалась достаточно большая пороговая доза на обеих сторонах. Небольшие нарушения пропорциональности в ходе кривой замеряемой на участке измерения величины могут быть линеаризованы с помощью корректора. Если источник и приемник радиоактивного излучения закрепить на кристаллизаторе или внутри него таким образом, чтобы это измерительное устройство совершало колебательное движение вместе с кристаллизатором, то качание кристаллизатора модулирует фактичес­кое значение высоты уровня жидкого металла. Эта модуляция, рас­сматриваемая как нежелательная помеха, компенсируется с помощью соответствующего устройства. Необходимость компенсации отпадает в том случае, если высота или частота подъемов кристаллизатора во время измерения соответствуют требуемой точности регулирова­ния уровня металла, в нем.

Для повышения безопасности или для распознавания "конца процесса разливки стали" в кристаллизаторах дополнительно пре­дусматривается так называемый "шлаковый барьер". Он состоит из точечного источника радиоактивного излучения и дополнительного сцинтилляционного счетчика. Это измерительное устройство опреде­ляет уровни воздуха, шлака и стали на основе их различной плотности.

Это измерительное устройство сигнализирует о данных уров­нях, и эти сигналы используются для управления машиной непрерыв­ного литья заготовок.

 

       Данные о фактическом уровне металла в кристаллизаторе, получаемые от радиоактивного измерительного устройства, через корректор характеристик поступают в компенсационный усилитель. На втором входе компенсационного усилителя имеется напряжение, модулируемое движением подъема кристаллизатора. Подключенный активный фильтр продолжает обработку компенсированного, но, все-таки еще измененного статистическим колебанием фактического значения уровня металла в кристаллизаторе. После этого сигнал, фактического значения достигает смесительного входа регулятора уровня без выдержки времени и определяет разность между фактическим и заданным уровнями металла в кристаллизаторе.

Сигнал для регулирования скорости вытягивания заготовки снимается на выходе регулятора уровня и через регулируемые ограничительные  устройства подводится к регулятору скорости вращения органов, регулирующих скорость вытягивания заготовки. Сигнал отклонения регулируемой величины h (то есть регулируемого уровня металла в кристаллизаторе - прим. переводчика) поступает в согласующий усилитель. Этот нелинейный усилитель, находящийся в замкнутом контуре регулирования стопора, работает как функциональное моделирующее устройство. Коэффициент пропорционального усиления этого согласующего усилителя, при отклонениях, регулируемой величины менее +-15% составляет 0,2, а при отклонениях регулируемой величины более +15% составляет I. Этим достигается то, что замкнутый контур регулирования стопора в интервале нормальных откло­нений остается стабильным, однако большие отклонения при доста­точно большом усилении могут быть быстро отрегулированы.   Сигнал отклонения регулируемой величины, имеющийся в распоряжении на выходе согласующего усилителя, поступает в пропорционально-интегральной регулятор с раздельными интегральным и пропорциональным каналами. Интегральный канал построен как двухдекадный счетчик, задача которого заключается в регулировании отклонения уровня металла в кристаллизаторе до нуля. Интегральный канал состоит из устройства, моделирующего величину (Betragsbildner) преобразователя напряжения в частоту, двухдекадного счетчика прямого и обратного счета и подключенного цифро-аналогового преобразователя.     

При начале, процесса литья параллельный пропорциональный канал отключается. При заполнении кристаллизатора сталью оператор  вручную устанавливает рабочую точку регулятора. Во избежание скачкообразного перехода при переключении на "автоматику" система регулирования устанавливается на фактическое значение в выключен­ном состоянии. Как только ypoвень металла в кристаллизаторе дости­гает участка измерения, пропорциональней регулятор, включаемой устройством, регистрирующим предельные значения, берет на себя  регулирование уровня металла в кристаллизаторе. При этом предполагается, что в момент процесса переключения на автоматическое регулирование стопор находится в положении эффективного регулирования.

Исходная величина интегрального канала впоследствии суммируется с исходной величиной пропорционального канала, и обе величины поступают в конечной усилитель и вместе с тем на cepвoпривод для установки стопора.

Рассмотренная выше система обеспечивает небольшие пропорциональные усиления при одновременно больших продолжительностях  переналадок.

Эту систему регулирования в соответствии с требованиями дополняют логические соединительное и управляющие устройства, чтобы отдавать команды и обеспечивать соответствующие переключения внеш­них устройств.

Кроме того, дополнительно могут выдаваться отличительные сигналы или вводиться корректирующие сигналы. Форма и вид этих сигналов должны соответствовать требованиям машины непрерывного литья заготовок и данной системе регулирования

      В условиях повышения требований к качеству непрерывного слитка особое значение приобретает измерение и поддержание уровня жидкого металла в кристал­лизаторе МНЛЗ. Попытки использовать здесь самые разнообразные метода измерений привели к преимущественному распространению метода с применением радиоактивных источников, излучение которых используется для просвечивания кристаллизатора с жидким металлом. За рубежом аппаратура такого типа разработана и широко тиражируется фирмами "Bertgold" ("Бертгольд"), ФРГ, "Brown Boverl" ("Браун Бовери"), Швейцария, и используются при изготовлении оборудования ШЛЗ машинострои­тельными фирмами "Demag" ("Демаг"), ФРГ "Mannesmarm" ("Маннесман"), ФРГ и ДР.

В системе измерения уровня металла в кристаллизаторе фирмы "Бертгольд" в качестве источника радиоактивного излучения мощностью 10 МэВ используется изо­топ Со-60. Источник выполняется в виде проволочной спирали» покрытой для защиты от химически агрессивных сред благородным металлом. Для компенсации нелинейности измерения уровня жидкого металла, обусловленной изменениями толщин про­свечивания по мере подъема уровня, изменяют шаг намотки спирали, мощность ис­точника рассчитывается и выбирается в каждом конкретном случае в зависимости от геометрических размеров кристаллизатора и расстояния между источником и приемником излучения. Источник размещается в свинцовом контейнере и поток из­лучения коллимируется поворотным коллиматором. В качестве приемника излучения в системе используется сцинтилляционный детектор на базе кристалла NaY, разме­щаемый в защитном стальном водоохлаждаемом кожухе.

При использовании аппаратуры для контроля уровня металла в квадратных кристаллизаторах источник и приемник излучения размещаются стационарно вне кристаллизатора. На мощных слябовых МНЛЗ источник и приемник размещаются непо­средственно в стенке кристаллизатора в специальных приливах. С помощью термо­стойкого кабеля приемник излучения через соединительную коробку соединен с из­мерительным прибором типа В 3118, который является интегрирующим накопителем импульсов с последующим преобразованием сигнала интегратора в унифицированный сигнал 0-10 В и 0-5 мА. Прибор рассчитан на работу с потоком импульсов 450-9000 имп/с, интегратор позволяет накапливать их с постоянной времени 0,5; I и 2 с.

 

 

Датчики инфракрасного излучения для определения уровня металла в кристаллизаторе

 

Наряду с использованием радиоизотопных измерителей уровня за рубежом ведутся интенсивные поиски новых средств контроля уровня металла в кристаллиза­торе, более простых с точки зрения размещения их в составе оборудования и бо­лее надежных в эксплуатации. [3] Так, фирмами «concast" ("Конкаст"), Швейцария и "Clesid" ("Клесид"), Франция, разработан датчик инфракрасного излучения для определения уровня металла в кристаллизаторе, которой располагается на разли­вочной площадке и механически не связан с кристаллизатором. Предложенный измеритель уровня по данным фирм-разработчиков, отличается простотой и надеж­ностью, работает независимо от состояния поверхности ванны жидкого металла в кристаллизаторе (наличие шлаковых смесей, выбросы пламени и т.д.). Структурная схема инфракрасного измерителя уровня металла в кристаллизаторе приведена на рис.6.

 

Рис. 6 . Схема измерителя уровня металла в кристаллизаторе, разработанного фирмой "Клесид", Франция:

1 - кристаллизатор; 2 - датчик уровня; 3 - шкаф электронной аппаратуры; 4 коммутирующая панель; 5 - блок первичной обработки сигнала; 6 - сигнальное устройство;7-переключатель, используемый при изменении размеров кристаллизатора; 8 – ПИ (пропорционально-интегральный) регулятор; 9 - усилитель мощности; 10 - переключатель; II - контрольная лампа "Наличие питания"; 12-ин­дикаторная лампа работы в автоматическом режиме; 13 – кнопка установки нуля; 14 - соединительный клеммник.

Аналогичный измеритель разработан фирмой "CEDA" ("ЧЕДА"), Италия. Измеритель также работает на основе принципа инфракрасного излучения от ван­ны жидкого металла в кристаллизаторе, однако в отличие от ранее рассмотренно­го, не требует перенастройки при изменении размеров кристаллизатора. Это обу­славливается тем, что работа измерителя основывается на представляющим инте­рес принципе облучения покрытой шлаком ванны жидкого металла в кристаллизато­ре мощным монохроматическим излучением в области спектра, для которой слой шлака является достаточно прозрачным и на который посторонние источники света не влияют. Отраженный от поверхности чистого металла поток инфракрасного излу­чения детектируется оптоэлектронным датчиком. При этом изменение температуры металла, интенсивности его свечения, а также посторонние источники света и шлак не оказывают влияния на показания прибора. Система используется в настоя­щее время на ряде сортовых МНЛЗ заводов Италии, обеспечивая точность измере­ния уровня ±10 мм.

 

 

Метод контроля уровня металла в кристаллизаторе основанный на использовании вихревых токов, индуктируемых ка­тушкой, размещенной над зеркалом жидкого металла в кристаллизаторе.

Интересный метод контроля уровня металла в кристаллизаторе предложен фирмой "Ниппон кокан", Япония. Метод основан на использовании вихревых токов, индуктируемых ка­тушкой, размещенной над зеркалом жидкого металла в кристаллизаторе.[3] Изме­рительная катушка полу­чает питание от высокоча­стотного генератора (50 кГц) через усилитель с положительной обратной связью. В зависимости от положения зеркала метал­ла полное сопротивление измерительной катушки, зависящее от ЭДС, наводи­мой в ней вихревыми тока­ми, также изменяется, что служит мерой положе­ния уровня жидкого метал­ла в кристаллизаторе. Из­мерительная катушка раз­мещена в защитном керами­ческом стакане, охлаждае­мым воздухом. Постоянная времени комплекта составляет менее 0,2 с, точностью измерения ±1 мм

 На рис.7 приведена структурная схема устройства

 

Рис. 7 . Схема измерителя уровня металла в кристалли­заторе, разработанного фирмой "Ниппон кокан", Япония:

I - усилитель обратной связи; 2 - осциллятор; 3 -      детектор; 4 - реактивная катушка; 5 - основной блок; .6 - измерителная катушка; 7 - зеркало ванны; 8 -магнитное поле; 9 - кристаллизатор; 10 - ванна жидкого металла; II - вихревые токи.

В СССР также ведутся работы по поиску новых методов контроля уровня жидкого металла в кристаллизаторе. Так, в Институте проблем управления разрабо­тан датчик уровня жидкого металла в кристаллизаторе, использующий энергию вы­сокочастотных частотно-модулированных колебаний.

Энергия высокочастотных колебаний подводится от генератора к резонансно­му контуру, образованному струей жидкого металла, которая охватывается кольце­вым проводником с подключенным к нему высокочастотной коаксиальной линией свя­зи от генератора, кристаллизатором и жидким металлом промежуточной емкости. Струя жидкого металла в этом случае играет роль короткозамкнутого отрезка, нижний конец которого образован электрическим замыканием струи металла и жид­кого металла в кристаллизаторе.

Кольцевой проводник датчика измерительного устройства, охватывая струю металла, поступающего в кристаллизатор, образует с ней электрическую емкость, через которую и осуществляется бесконтактный подвод высокочастотной энергии от генератора к отрезку контура.

При индуктивном характере входного комплексного сопротивления отрезка, образованного струей жидкого металла, емкость связи кольцевого проводника об­разует с эквивалентной индуктивностью этого отрезка последовательный колеба­тельный контур, подключённый в качестве нагрузки к линии связи с генератором возбуждения. Резонансная частота контура является функцией величины эквивалент­ной индуктивности и, следовательно, положения уровня металла в кристаллизаторе.

 Теперешние требования к качеству стали обусловливают необходимость высокой точности па­раметров процесса непрерывного литья. Между тем, особенно при регулировании уровня жидкого металла в кристаллизаторе применявшиеся прежде традицион­ные способы при некоторых ситуациях процесса удов­летворительных результатов не давали. Описанная ниже модульная система регулирования уровня жидко­го металла реагирует на изменения процесса быстрее и обеспечивает постоянство поддержания уровня

 

Дата: 2019-07-24, просмотров: 281.