Алгоритм сжатия информации. Алгоритм Хаффмена. Алгоритм Лемпеля-Зива
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Сжа́тие да́нных (англ. data compression) — алгоритмическое преобразование данных, производимое с целью уменьшения занимаемого ими объёма. Применяется для более рационального использования устройств хранения и передачи данных.

Методы сжатия данных можно разделить на два типа:

1. Неискажающие (loseless) методы сжатия (называемые также методами сжатия без потерь) гарантируют, что декодированные данные будут в точности совпадать с исходными;

2. Искажающие (lossy) методы сжатия (называемые также методами сжатия с потерями) могут искажать исходные данные, например за счет удаления несущественной части данных, после чего полное восстановление невозможно.

Алгоритм Хаффмана

Один из первых алгоритмов эффективного кодирования информации был предложен Д. А. Хаффманом в 1952 году. Идея алгоритма состоит в следующем: зная вероятности символов в сообщении, можно описать процедуру построения кодов переменной длины, состоящих из целого количества битов. Символам с большей вероятностью ставятся в соответствие более короткие коды. Коды Хаффмана обладают свойством префиксности (то есть ни одно кодовое слово не является префиксом другого), что позволяет однозначно их декодировать.

Классический алгоритм Хаффмана на входе получает таблицу частот встречаемости символов в сообщении. Далее на основании этой таблицы строится дерево кодирования Хаффмана (Н-дерево).

1. Символы входного алфавита образуют список свободных узлов. Каждый лист имеет вес, который может быть равен либо вероятности, либо количеству вхождений символа в сжимаемое сообщение.

2. Выбираются два свободных узла дерева с наименьшими весами.

3. Создается их родитель с весом, равным их суммарному весу.

4. Родитель добавляется в список свободных узлов, а два его потомка удаляются из этого списка.

5. Одной дуге, выходящей из родителя, ставится в соответствие бит 1, другой — бит 0. Битовые значения ветвей, исходящих от корня, не зависят от весов потомков.

6. Шаги, начиная со второго, повторяются до тех пор, пока в списке свободных узлов не останется только один свободный узел. Он и будет считаться корнем дерева.

Допустим, у нас есть следующая таблица частот:

Этот процесс можно представить как построение дерева, корень которого — символ с суммой вероятностей объединенных символов, получившийся при объединении символов из последнего шага, его n0 потомков — символы из предыдущего шага и т. д.

Чтобы определить код для каждого из символов, входящих в сообщение, мы должны пройти путь от листа дерева, соответствующего текущему символу, до его корня, накапливая биты при перемещении по ветвям дерева (первая ветвь в пути соответствует младшему биту). Полученная таким образом последовательность битов является кодом данного символа, записанным в обратном порядке.

Для данной таблицы символов коды Хаффмана будут выглядеть следующим образом:

Дата: 2019-07-24, просмотров: 251.