ТИПЫ ГИДРОГЕНЕРАТОРОВ И ИХ ОСОБЕННОСТИ
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

1. ТИПЫ ГИДРОГЕНЕРАТОРОВ И ИХ ОСОБЕННОСТИ

1.1 Основные исполнения гидрогенераторов

1.2 Основные зависимости между размерами и параметрами

2. ОРГАНИЗАЦИЯ ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ И РЕМОНТА ГИДРОГЕНЕРАТОРОВ

2.1 Система планово-предупредительного ремонта, планирование подготовка и проведение технического

обслуживания и ремонта

2.2 Номенклатура и объем типовых работ

при капитальном ремонте

3. РАЗБОРКА И СБОРКА ГИДРОГЕНЕРАТОРОВ

4. РЕЖИМЫ РАБОТЫ ГИДРОГЕНЕРАТОРОВ

4.1 Общие положения

4.2 Изменение напряжения

4.3 Изменение частоты

4.4 Изменение коэффициента мощности

4.5 Изменение температуры воды и воздуха

4.6 Несимметричная нагрузка



ВВЕДЕНИЕ

Гидроэнергетика непрерывно развивается в направлении увеличения мощности строящихся ГЭС. Построены такие энергетические гиганты, как Братская, Усть-илимская, Красноярская, Саяно-Шушенская ГЭС мощностью каждая от 4 до 6 миллионов киловатт, и намечено строительство еще более мощных ГЭС. Этим предопределяется постоянный рост единичной мощности гидрогенераторов. Уже введены в эксплуатацию агрегаты по 500-700 МВт и предстоит создание гидрогенераторов мощностью 1-1.5 миллионов киловатт.

Повышение требований в отношении технико-экономических показателей, качества, надежности и долговечности гидрогенераторов вызвали необходимость совершенствования конструкций основных узлов, методов расчета и контроля. Достижения в этих областях сделали возможным значительно поднять общий уровень гидрогенераторостроения. Россия занимает ведущее место в области производства гидрогенераторов, обеспечивая ими не только постоянно растущие внутренние потребности, но и поставляя значительную часть гидрогенераторов на экспорт.



ТИПЫ ГИДРОГЕНЕРАТОРОВ И ИХ ОСОБЕННОСТИ

Номенклатура и объем типовых работ при капитальном ремонте

 

Основой для планирования ремонтов гидрогенераторов являются установленные [21 нормы продолжительности простоя гидроагрегатов (в том числе гидрогенераторов) в ремонте и нормативы продолжительности эксплуатации гидроагрегатов между капитальными ремонтами.

Другой составляющей продолжительности простоя гидрогенераторов в капитальном ремонте является время, необходимое для выполнения сверхтиповых работ, если они не могут быть произведены в нормативную продолжительность ремонта гидроагрегата и дополнительные работы лежат на критическом пути сетевого графика, работы, находящиеся на критическом пути и определяющие продолжительность простоя, организуются в две-три смены.



РЕЖИМЫ РАБОТЫ ГИДРОГЕНЕРАТОРОВ

Общие положения

В процессе эксплуатации гидрогенераторов неизбежны отклонения от номинальных условий их работы: по напряжению, частоте, току статора, коэффициенту мощности, температуре охлаждающего агента и др. Кроме того, в условиях эксплуатации имеют место переходные и аварийные режимы работы различной длительности .

Чтобы отклонения от номинальных условий работы и возможные анормальные режимы не приводили к выходу из строя преждевременному износу гидрогенераторов, необходимо учитывать их уже при проектировании, а в эксплуатации не превышать допустимых пределов. Необходимо также учитывать и такие процессы, как пуск, синхронизация, останов, режимы, и особые условия работы подпятника, систем возбуждения и охлаждения, других вспомогательных систем.

Установившиеся нормы допустимых отклонений от номинальных режимов являются исходными данными для проектирования гидрогенераторов, выбора релейных защит, а также для действий эксплуатационного персонала гидроэлектростанций.

Ниже приводятся и анализируются эти нормы, а также излагаются некоторые методы расчетов по определению областей допустимых режимов работы гидрогенераторов.

Изменение напряжения

 

Обычно гидрогенераторы рассчитывают так, чтобы при изменении напряжения на выводах обмотки статора в пределах 5% номинального они могли длительно развивать номинальную мощность при номинальных значениях частоты и коэффициента мощности. Это достигается тем, что индукции в различных участках магнитопровода машины и плотности тока в обмотках выбираются с учетом возможного их повышения в указанных пределах.

Со снижением напряжения повышение нагрева от потерь в меди обмотки статора вследствие увеличения в ней тока компенсируется снижением нагрева из-за уменьшения потерь в сердечнике статора. При уменьшении напряжения ниже 95% номинального увеличения тока статора свыше 105% номинального обычно не допускается, даже если при этом температура обмотки статора остается ниже предельно допустимого значения. Это объясняется тем, что в машинах с косвенным воздушным охлаждением перепад температуры в изоляции обмотки статора пропорционален квадрату тока и чрезмерное увеличение градиента этого перепада может привести к необратимым относительным смещениям слоев корпусной изоляции с изоляцией элементарных проводников стержней и в результате к снижению срока службы изоляции.

Гидрогенераторы обычно рассчитываются также из условия их длительной работы при повышении напряжения до 110% номинального включительно. Однако ввиду увеличения потерь в стали, вызываемых ими местных нагревов, а также роста тока и нагрева обмотки возбуждения сохранить при этом номинальную мощность не удается. Обычно при повышении напряжения свыше 105% номинального кажущаяся мощность гидрогенератора снижается примерно на 2% с каждым процентом повышения. Работа при напряжении более 110% номинального не допускается. Сказанное выше иллюстрируется в таблице 4-1.

В некоторых случаях при проектировании гидрогенераторов могут быть иные требования по отклонениям напряжения от номинального значения: большой диапазон изменений напряжения, в том числе и с сохранением номинальной мощности, возможность работы с номинальной или весьма близкой к ней мощностью при достаточно большом снижении напряжения и т.д. Эти требования обуславливаются специфически условиями энергосистем в различных районах, не имеющих, порой, необходимых резервов мощности и обладающих слабыми связями с другими энергосистемами. В этих случаях требуются внесение коррективов в выбор электромагнитных нагрузок активной зоны гидрогенераторов и расчет сердечников и обмоток статора и ротора на экстремальные длительные значения токов и напряжений.

 

 

В тех случаях, когда требуется предусмотреть продолжительную работу гидрогенератора с напряжением выше 110% номинального, необходимо соответственно увеличить толщину корпусной изоляции обмотки статора против нормативного значения, выбранного из условий длительной работы с напряжением до 110% и кратковременных эпизодических повышений напряжения до 150% номинального.

 

Изменение частоты

 

Гидрогенераторы как и большинство других типов электрических машин, рассчитываются, как правило, из условия их работы с номинальной мощностью при изменении частоты в пределах ±2,5% номинальной. Однако при уменьшении частоты относительно номинальной повышение напряжения сверх номинального не допускается. Это обусловлено тем, что для поддержания постоянного значения напряжения при снижении частоты приходится увеличивать магнитный поток, а также ток ротора. Если при этом и повысить напряжение, т.е. еще более увеличить рабочий магнитный поток в машине, то нагревы сердечника и обмотки статора и температура обмотки ротора могут превысить допустимые пределы.

В отдельных случаях могут быть также ограничения при работе гидрогенератора с повышенной против номинальной частоты и одновременно с большим напряжением. При повышении частоты несколько увеличиваются добавочные потери в проводниках обмотки статора и на поверхности полюсных наконечников: потери в сердечнике статора изменяются незначительно: они несколько возрастают из-за увеличения частоты, но одновременно снижаются благодаря уменьшению магнитного потока. В результате общий нагрев обмотки статора не выходит из допустимых пределов. Однако при повышении и напряжения из-за роста потерь в стали сердечника статора в напряженных в тепловом отношении гидрогенераторах может возрасти температура обмотки статора выше допустимой. По этой причине для отдельных типов гидрогенераторов не допускается работа при повышенной частоте с одновременно увеличенным напряжением по сравнению с номинальным.

 

Несимметричная нагрузка

 

В практике эксплуатации гидрогенераторов возможны более или менее продолжительные режимы работы, когда фазные токи образуют несимметричную систему, т.е. имеют неодинаковую амплитуду и различный фазовый сдвиг относительно напряжения. В общем случае фазные напряжения также могут представлять собой несимметричную систему. Если иметь в виду внешнюю несимметрию, то она может возникнуть, например, при несимметричной нагрузки или при обрыве одной из фаз линии.

 

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

1. ТИПЫ ГИДРОГЕНЕРАТОРОВ И ИХ ОСОБЕННОСТИ

1.1 Основные исполнения гидрогенераторов

1.2 Основные зависимости между размерами и параметрами

2. ОРГАНИЗАЦИЯ ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ И РЕМОНТА ГИДРОГЕНЕРАТОРОВ

2.1 Система планово-предупредительного ремонта, планирование подготовка и проведение технического

обслуживания и ремонта

2.2 Номенклатура и объем типовых работ

при капитальном ремонте

3. РАЗБОРКА И СБОРКА ГИДРОГЕНЕРАТОРОВ

4. РЕЖИМЫ РАБОТЫ ГИДРОГЕНЕРАТОРОВ

4.1 Общие положения

4.2 Изменение напряжения

4.3 Изменение частоты

4.4 Изменение коэффициента мощности

4.5 Изменение температуры воды и воздуха

4.6 Несимметричная нагрузка



ВВЕДЕНИЕ

Гидроэнергетика непрерывно развивается в направлении увеличения мощности строящихся ГЭС. Построены такие энергетические гиганты, как Братская, Усть-илимская, Красноярская, Саяно-Шушенская ГЭС мощностью каждая от 4 до 6 миллионов киловатт, и намечено строительство еще более мощных ГЭС. Этим предопределяется постоянный рост единичной мощности гидрогенераторов. Уже введены в эксплуатацию агрегаты по 500-700 МВт и предстоит создание гидрогенераторов мощностью 1-1.5 миллионов киловатт.

Повышение требований в отношении технико-экономических показателей, качества, надежности и долговечности гидрогенераторов вызвали необходимость совершенствования конструкций основных узлов, методов расчета и контроля. Достижения в этих областях сделали возможным значительно поднять общий уровень гидрогенераторостроения. Россия занимает ведущее место в области производства гидрогенераторов, обеспечивая ими не только постоянно растущие внутренние потребности, но и поставляя значительную часть гидрогенераторов на экспорт.



ТИПЫ ГИДРОГЕНЕРАТОРОВ И ИХ ОСОБЕННОСТИ

Дата: 2019-07-24, просмотров: 195.