Расчет теплоутилизационной установки вторичных энергоресурсов
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Расчет теплоутилизационной установки вторичных энергоресурсов

Курсовая работа по курсу: «Технической термодинамика и теплотехника»

Вариант 15

 

 

Выполнил: студент III – ХТ – 2

Степанов А. А.

 

Руководитель: старший преподаватель,

доцент кафедры «ХТПЭ» Финаева Н. В.

 

Самара

2006 г.


Содержание:

 

1.Введение. 3

2. Постановка задачи. 5

3.Описание технологической схемы.. 5

4. Технологический расчёт. 6

4.1 Подготовка исходных данных по топливному газу и водяному пару. 6

4.2. Расчет процесса горения в печи. 8

4.3. Тепловой баланс печи, определение КПД печи и расхода топлива 11

 4.4. Гидравлический расчет змеевика печи……………………………….......13

5. Тепловой баланс котла-утилизатора (анализ процесса парообразования)..15


Тепловой баланс воздухоподогревателя. 19

7. Тепловой баланс скруббера (КТАНа)……………………………………….20

8. Расчет энергетического КПД тепло-утилизационной установки. 21

9. Расчет эксергетического КПД процесса горения 21

10. Заключение. 22



Введение

 

Химический комплекс, оказывая существенное воздействие на ускорение научно-технического прогресса в отраслях-потребителях его продукции, превосходит средние удельные показатели по энергоемкости в 2-3 раза. При этом следует учитывать, что в химических отраслях промышленности потребление топливно-энергетических ресурсов (ТЭР) определяется условиями протекания химических реакций, сопровождаемых тепловым эффектом, и в обозримом будущем не следует ожидать его снижения.

В последние годы структура потребления ТЭР менялась незначительно, несмотря на существенный рост энергетических затрат в отрасли (за период с 1985 по 2000 г. – в два раза). В виде тепловой энергии потребляется 48,3%, электроэнергии – 30,2% и первичного топлива – 12,5% (без учета топлива, используемого в качестве сырья).

В химической промышленности непосредственное потребление топлива на энергетические цели составляет около 1/8 суммарного энергопотребления. Около 40% сжигается в промышленных котельных и на ТЭУ для производства тепловой и электрической энергии. Остальная часть топлива (преимущественно твердого и газообразного) используется в технологических установках.

В отраслях химического комплекса основной источник потерь энергии связан с путями ее использования. Например, КПД процесса синтеза аммиака колеблется в пределах 40-50% в зависимости от вида сырья. Энергетический КПД для обычных методов получения винилхлорида – 12-17%, для синтеза NO – всего лишь 5-6,5% и т.д. Высокотемпературные химические процессы (>4000С) сопровождаются потерями энергии, достигающими в среднем 68%.

Подобное состояние дел определяется не только объективными причинами. По традиции химики-технологи во главу угла ставят вопросы увеличения выхода продукта реакции и конверсии сырья, но не создания энергетически эффективных технологических процессов.

Для коренного улучшения ситуации в химической отрасли, касающейся рационального использования ТЭР, разработана энергетическая программа СНГ, согласно которой намечаются следующие основные направления:

· Изменение структуры производства с вытеснением энергоемких видов химической продукции менее энергоемкими;

· Интенсификация, оптимизация параметров и режимов производственных процессов;

· Создание принципиально новых химических технологий;

· Электрификация технологических процессов;

· Создание химических производств с использованием ядерных источников энергии.

Наряду с энергетической рационализацией самих химических методов (технологии) и аппаратурного оформления, необходимо выявлять вторичные источники энергии и использовать их. По подсчетам специалистов этот путь является вдвое-втрое более выгодным, чем дополнительная добыча и транспортировка эквивалентного количества топлива.



Постановка задачи

 

Проанализировать работу печи перегрева водяного пара и для эффективности использования теплоты первичного топлива предложить теплоутилизационную установку вторичных энергоресурсов.

 

Технологический расчет печи

Подготовка исходных данных по топливному газу и водяному пару

4.1.1.

4.1.2.

4.1.3. Молекулярная масса смеси газов в топливе:

Массовая доля газов в топливе:

; ,

,

,

.

4.1.4. Удельная газовая постоянная для каждого из газов в смеси: .

,

4.1.5. Плотность топливного газа при н.у. и при рабочих условиях:

4.1.6. Удельный объем топливного газа:

.

4.1.7. Парциальное давление газов в смеси:

4.1.8. Определение свойств водяного пара

Известно, что:

производительность печи по водяному пару G=4,5 кг/с,

давление пера на входе Р1=1.0 МПа ≈ 10 бар = 9,87ат,

температура пара на входе в печь t1=179ºС,

температура пара на выходе из печи t2=730ºС.

По таблице [1] определяем свойства кипящей воды и сухого насыщенного пара

Таблица 1

 

t,ºC

Р=10 bar

730

ts=1790C

 

v′′=0,1980

 

 

h′′=2775,25

 

 

s′′=6,5990

 

v

h

s

0,4709

3988,61

8,3446

 

Изменение энтальпии:

Н – изменение энтальпии, приходящееся на 4,5кг.

Изменение энтропии:

 

Расчётным методом определим энтальпию перегретого пара и сравним её значение с табличным.

Ошибка по энтальпии:

Ошибка по температуре кипения:

Изменение внутренней энергии: ,

Рассчитанные по полиномиальным уравнениям:

 

 

4.2. Расчет процесса горения в печи

 

4.2.1. Определение основных характеристик топлива:

Значения  взяты из таблицы 1.

Таблица 1

Низшая теплота сгорания топлива

Компонент

, МДж/м3

СН4

35.84

С2Н6

63.8

С3Н8

91,32

С4Н10

118.73

С5Н12

146.1

СО2

12.65

 

4.2.2. Элементарный состав топлива определяем по формулам:

4.2.3. Теоретическое количество воздуха, необходимое для сгорания единицы количества топлива , кг/кг, вычисляется по формуле:

, где:

α=1,16 – коэффициент избытка воздуха.

4.2.4. Количество продуктов сгорания:

или .

Рассчитаем объем продуктов сгорания , а также содержание каждого компонента в массовых ( ) и объемных ( ) долях по формулам:

, ,

,

Результаты расчетов представлены в таблице 2.

Таблица 2

 

Наименование

CO2

H2O

N2

O2

Σ

масса i-го комп. кг/кг

1,5253

0,9259

7,8828

0,3093

10,64

масс. %,

14,3312

8,6991

74,0635

2,9061

100

объем i-го комп., м3/кг

0,7763

1,1512

6,3032

0,2165

8,4473

объем. %,

9,1905

13,6281

74,6181

2,5632

100

 

4.2.4. Рассчитаем энтальпию продуктов сгорания:

, где:

t – температура, К,

 - теплоемкость i-го компонента, кДж/(кг٠К),

mi – масса i-го компонента, кг/кг

Результаты расчетов приведены в таблице 3.

Таблица 3

 

t, 0C

T, K

ct , п.с., кДж/(кг٠К)

Ht , п.с., кДж/кг

0

273

11,4391

0,0000

100

373

11,5414

1154,1390

200

473

11,6559

2331,1712

300

573

11,7946

3538,3688

400

673

11,9381

4775,2492

500

773

12,0820

5404,5230

600

873

12,2349

6040,9895

700

973

12,3919

7340,9414

800

1073

12,5416

8674,3359

1000

1273

12,8120

10033,2439

1500

1773

13,8046

12812,0027

 

Построим график зависимости H t, п.с. = f(t):

 

Рис. 2. График зависимости H t, п.с. = f(t).

 

4.3 Тепловой баланс печи, определение КПД печи и расхода топлива.

 

4.3.1. Полезная тепловая нагрузка печи , Вт:

,

где , .

4.3.2. КПД печи:

, где:

 – потери в окружающую среду,

 при ,

– низшая теплота сгорания топлива.

КПД топки: .

4.3.3. Расход топлива:

4.3.4. Расчет радиантной камеры:

, где:  – энтальпия дымовых газов при температуре перевала печи tп = 852,30С.

Проверим распределение нагрузки в печи: , т.е. условия соблюдены.

4.3.5. Тепловая нагрузка конвекционной камеры:

4.3.6. Энтальпия водяного пара на входе в радиантную камеру:

 

При давлении Р1 = 9,87 атм значение температуры водяного пара на входе в радиантную секцию tk =3150C.

4.3.7. Температура экрана в рассчитываемой печи:

4.3.8. Максимальная температура горения топлива:

,

где  – удельная теплоемкость при температуре перевала.

4.3.9. Для tп и tmax по графикам определяем теплонапряженность абсолютно черной поверхности qs:

Таблица 4

 

q, 0C 200 400 600

qs, Вт/м2

178571,43 150000 117857,14

 

Определяем теплонапряженность при q = 542,50С: qs = 127098,21 Вт/м2.

Таким образом, полный тепловой поток, внесенный в топку:

 

4.3.10. Эквивалентная абсолютно черной поверхность равна:

.

 

4.3.11. Принимаем степень экранирования кладки y = 0,45; для a=1,05 примем .

Эквивалентная плоская поверхность: .

Диаметр радиантных труб , диаметр конвекционных труб .

Принимаем однорядное размещение труб и шаг между ними .

Для этих значений фактор формы К= 0,87.

4.3.12. Величина заэкранированности кладки: .

4.3.13. Поверхность нагрева радиантных труб:

Таким образом, выбираем печь .

Характеристика печи:

Таблица 5

 

Шифр
Поверхность камеры радиации, м2 180
Поверхность камеры конвекции, м2 180
Рабочая длина печи, м 9
Ширина камеры радиации, м 1,2
Способ сжигания топлива Беспламенное горение

 

Длина .

Число труб в камере радиации: .

Теплонапряженность радиантных труб: .

Число конвективных труб: .

Располагаем трубы в шахматном порядке по 3 в одном горизонтальном ряду, шаг между трубами .

4.3.14. Средняя разность температур:

4.3.15. Коэффициент теплопередачи:

4.3.16. Теплонапряженность поверхности конвективных труб:

.

Анализ процесса по стадиям.

 

1) Ищем температуру tх. На стадии нагревания:

По графику определяем температуру для данной энтальпии, которая составляет 259,4 0С. Таким образом

2) Находим теплоту, пошедшую на испарение питательной воды:

Находим теплоту, пошедшую на нагрев питательной воды:

Определяем общее количество теплоты по питательной воде:

Таким образом, доля теплоты, переданная на стадии нагревания составляет:

;

Определяем требуемую площадь поверхности теплообмена:

Здесь , средняя температура при нагреве питательной воды:

Принимаем в зоне испарения . Определим среднюю температуру при испарении питательной воды:

Исходя из этого, поверхность испарения должна быть:

.

5.5. Общая площадь составляет:

С запасом 20% принимаем:

По данной площади подбираем теплообменник со следующими характеристиками:

Таблица 6

 

Диаметр кожуха, мм Число трубных пучков, шт Число труб в одном пучке, шт Поверхность теплообмена, м2 Площадь сечения одного хода по трубам, м2
2200 3 362 288 0,031

 

Расчет теплоутилизационной установки вторичных энергоресурсов

Дата: 2019-07-24, просмотров: 208.