Опис конструкції конкретного об'єкта автоматизації й технологічного процесу
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Курсова робота

На тему

"Опис конструкції автоматизації випалювальної печі"



ЗМІСТ

Введення

1. Опис конструкції конкретного об'єкта автоматизації й

технологічного процесу

1.1. ППР - Випалювальна піч

1.2. Якість вапняку

1.3. Залишковий З2

1.4. Реакційна здатність

1.5. Об'єм повітря

1.6. Завантаження вапняку у вагові дозатори

1.7. Газ

1.8. Паливо

1.9. Запальний пальник

1.10. Нагрівальний пальник

1.11. Експлуатація печі

1.12. Вапняна піч як об'єкт керування

2. Вибір технічних засобів.

3. Значення принципової схеми контуру контролю

4. Техніка безпеки й охорона праці

5. Розрахунковий лист

Висновок

Список літератури



Введення

 

Проектування автоматизованих систем керування технологічними процесами вимагає глибоких знань і практичного засвоєння методів синтезу автоматичних систем керування. Завдання синтезу АСУ зважуються на підставі динамічних властивостей об'єктів керування й вимог, пропонованих до систем.

Розвиток сучасного металургійного виробництва супроводжується інтенсифікацією технологічних і виробничих процесів. Створення великих металургійних агрегатів і їхніх комплексів дозволяє більш ефективно використовувати сировину, паливо, капіталовкладення. У той же час здійснювати керування металургійними процесами в більшому й складному технологічному об'єктах без використання новітніх методів і засобів керування - неефективно або взагалі неможливо.

Ефективним засобом керування технологічними об'єктами є системи централізованого керування, що використовують обчислювальну й керуючу техніку. Такі системи керування одержали найменування автоматизованих систем керування технологічними процесами. АСУ ТП містить у собі більшу область систем керування технологічними процесами з різним ступенем звільнення людини від функцій контролю й керування.

АСУ ТП являють собою якісно новий щабель розвитку засобів і методів керування технологічними об'єктами, тому що в них використовуються технологічні й техніко-економічні параметри й критерії, а не тільки технічні, як це мало місце раніше. В АСУ ТП втілені досягнення локальної автоматики, систем централізованого контролю, електронної й обчислювальної техніки. Крім того, АСУ ТП робить загальну централізовану обробку первинної інформації в темпі протікання технологічного процесу, після чого інформація використовується не тільки для керування цим процесом, але й перетвориться у форму, придатну для використання на вищестоящих рівнях керування для рішення оперативних завдань.

Тому що АСУ ТП виконує й економіко-інформаційні функції вона здобуває величезне значення в керуванні агрегатами й процесами.



ППР - випалювальна піч

 

Існують два головних типи вертикальних шахтних печей. Одна шахта протистоїть потоку, що нагріває випалювальну піч і шахта з паралельними потоками, що нагрівають випалювальну піч. Стандарт ППР - ВИПАЛЮВАЛЬНА ПІЧ - випалювальна піч із двома шахтами чергуючи палаюче й не палаючу дію шахти. Є дві ключових характеристики ППР - ПЕЧІ:

1) паралельний потік гарячих газів і каменю в зоні випалу;

2) регенеративний прогрів усього повітря для горіння в процесі.

Випалювальна ППР - піч ідеально підходить для виробництва, високо реактивної вапна й доломить вапна через умови, створених паралельним потоком каменю й газів згоряння в "палаючій шахті". Додатково, регенеративний процес забезпечує найнижче споживання тепла всіх сучасних випалювальних печей.

Оскільки кількість охолодження повітря - не досить для повного згоряння палива, додаткове повітря, повинен бути поданий через бічні пальники. Як у цьому типі випалювальної печі паливо подається в нижній частині зони випалу (де матеріал уже обпалений) температура в цій області значно вище, ніж потрібно для виробництва високо-реактивної вапна.

У ППР випалювальних печах паливо подається у верхню частину зони випалу й виходу газів згоряння, паралельно матеріалу. Оскільки паливо уведене у верхній коней зони випалу, де матеріал може поглинати більшість теплоти звільняється паливом температура в зоні випалу - звичайно 950°С. Через це, паралельне нагрівання потоку - краще рішення по виробництву реактивного вапна й доломить вапна.

Друга важлива характеристика ППР - ПЕЧІ - регенеративний підігрів повітря для горіння. У випалювальних печах із зустрічним потоками, повітря для горіння - підігрівається в зоні, що прохолоджується, в обпаленому вапні. Однак прогрів обмежений ентальпією вапна. У зустрічному процесі нагрівання потоку є надлишок тепломісткості придатного до вживання, умісту в газі, що відходить, що не відновлений до виснаження. Деякі окремі проекти шахтної печі, тому включили рекуператори, щоб повернути це відпрацьоване тепло, але такі теплообмінники сприйнятливі до руйнувань, викликаними пилом, що втримується в гарячих газах, що відходять.

Регенеративний процес вимагає двох зв'язаних шахт. Кожна шахта підлегла двом різним режимам роботи, "горіння" і "не горіння". Одна шахта працює на "горіння" і одночасно, друга шахта працює в противотоці. Кожна шахта проводить рівну кількість часу в режимах роботи "не горіння" і "горіння".

В "палаючому способі", шахта характеризована паралельним потоком газів згоряння й сирого каменю, беручи до уваги, що, в "не палаючому" способі шахта характеризована потоком сирого каменю й газів, що відходять.

Регенеративний прогрів повітря для горіння робить теплову ефективність випалювальної печі фактично незалежної від фактора надлишку повітря для горіння. Це значно спрощує регулювання правильної довжини полум'я, щоб зробити бажану якість вапна. Більша кількість надлишку повітря - більше коротке полум'я, і менша кількість надлишку повітря - більше довге полум'я. Довжина полум'я - один із ключових факторів, щоб управляти реакційною здатністю негашеної вапна. Взагалі короткий факел і більше гарячий вогонь зменшує реакційну здатність обпаленого виробу.

Дві шахти, позначили 1 і 2, містять матеріал, що буде обпалений. Шахти по черзі або одночасно наповнюють вапняком залежно від місткості випалювальної печі. Вапно вивантажується безупинно з обох шахт. Паливо подається тільки в одну із двох шахт. Наприклад шахта № 1 палаюча шахта й шахта № 2 не палаюча шахта. Паливо подається через газові труби, фурми, які вертикально простираються до зони прогріву. Більше низький кінець труби, фурми, відзначає перехід до зони випалу від зони прогріву. Паливо уведене через ці фурми й рівномірно розподілено по всій області шахти.

Повітря для горіння подається під тиском нагорі зони прогріву вище футеровки. Вся система герметична. Повітря для горіння - підігрівається каменем у регенераторі (зона прогріву) до змішування з паливом. Повітряно-паливне полум'я перебуває в прямому контакті з матеріалом випалу, оскільки це проходить через зону випалу від верху до низу (паралельне нагрівання потоку).

Теплота передається від газів каменю в не палаючій шахті. гази, Що Відходять, підігрівають футеровку в зоні прогріву й підготовляють шахту до наступного циклу горіння в цій шахті.

Зміна від "горіння" до "не горіння" називається «періодом перемикання». Протягом кожного «періоду перемикання» зважена кількість вапняку наповнює випалювальну піч. Продукт випалу вивантажується з обох шахт безупинно під час циклу випалу столами розвантаження в герметичний бункер. Повітря на охолодження безупинно подається знизу в обидві шахти, щоб зменшити температуру виробу до вивантаження в бункер вапна. Під час перемикання, коли випалювальна піч разгерметизована, виріб вивантажується з бункера на віднаходити й конвеєра.

Чудова теплова конструкція ППР - ПЕЧІ може бути задовільно доведена за допомогою балансу теплоти. Сума ефективної теплоти, тобто теплоти, необхідної для розкладання, і теплових втрат забезпечує теплову потребу випалювальної печі. Теплові втрати складаються;

• Втрата через футеровку випалювальної печі рівняється приблизно 170 кДж(40 кілокалорій) / кг вапна,

• Тепломісткість негашеної вапна рівняється приблизно 80 кДж (20 кілокалорій) / кг вапна при розвантаженні температура 100°С,

• Тепломісткість, уміст у газах, що відходять, приблизно 290 кДж (70 кілокалорій) / кг вапна при розвантаженні температура°100 С.

Оскільки випалювальна піч не має ніякого переміщення, як ротаційна випалювальна піч, втрати через стіни може бути зменшена до мінімуму, використовуючи відповідну властивість теплоізоляційного вогнетриву. Додаткова ізоляція, щоб далі зменшити стінні втрати, була б занадто дорога.

Достатня кількість повітря на охолодження використовується, щоб зменшити температуру обпаленої вапна в зоні, що прохолоджується. Нагріте повітря згодом використовується в процесі, таким чином, що поліпшує ефективності випалювальної печі.

Хоча теоретично можливо зменшити температуру газу, що відходить, нижче°100 С, це не бажано через ущільнення й проблеми корозії при дії в діапазоні крапки роси газів.

Розгляд цих критеріїв проекту для теплових втратою випалювальної печі при виробництві вапна з 96 % Сао повна теплова вимога - приблизно 3500 кДж (840 кілокалорій) / кг.

ППР - випалювальні печі типово розробляються із двома шахтами прямокутної або круглої форми. Шахти зв'язані сполучним каналом у нижній частині зони випалу. Сполучний канал служить як транспортний трубопровід, щоб дозволити гарячим газам виходити з "палаючої шахти" і входити в "не палаючу шахту".

ППР - ПЕЧІ із двома шахтами використовують вапняк фракції 40 мм - 120 мм. Коли потрібне підвищення продуктивності, використовується вапняк фракції менше ніж 40 мм , трьох шахтна піч. Маленька фракція створює більший тиск, і збільшує тиск усередині випалювальної печі. Коли використовують три шахти, що відходять гази з палаючої шахти розподіляються у дві шахти, таким чином, відбувається скорочення газової швидкості й зниження тиску приблизно втроє. Технічний розвиток і досвід дозволили використовувати випалювальних печей із двома шахтами майже для всіх умов і усунули потреба у випалювальних печах із трьома шахтами.

ППР-ПІЧ працює під тиском, тому сталевий корпус повинен бути герметичний. Всі відкриття нагорі випалювальної печі для завантаження вапняку й поду шахт для вивантаження вапна закриті гідравлічними засувками. Вузький діапазон розміру каменю ідеальний для будь-якої випалювальної печі, але, через руйнівні властивості каменю, що широко змінюється розмір по фракції - типова ситуація в кар'єрі. ППР-ПІЧ може обпалювати широкий діапазон по фракції через складну систему завантаження. Їхнє співвідношення 4:1. Мінімальний кам'яний розмір для стандартного типу ППР-ПІЧ - приблизно 25 мм із максимальним розміром 125 мм. При відповідному встаткуванні завантаження й подачі каменю, максимальний розмір - 180 мм.



Якість вапняку

 

Що стосується всіх типів вертикальних шахтних печей використання твердих, високоякісних, чистих вапняків - ідеальна умова для безаварійної роботи ППР - ПЕЧЕЙ. Однак, внаслідок того, що шахти ППР - ПЕЧІ - фактично труба без будь-яких пристроїв, які могли утрудняти вільний потік вапняку й вапна, рух матеріалу - повільне й однорідне стирання. Це означає, що, і м'який вапняк може бути обпалений у ППР - ПЕЧІ.

Високоякісний вапняк із послідовними хімічними властивостями часто не доступні або недостатні. Зміна змісту карбонатів і домішок може привести до перевитрати при виробництві в ППР - печі.

Залишковий з2

ППР - ПІЧ дозволяє робити вапно із залишковими З02 0.5 %, у деяких випадках навіть нижче. Сталеливарна промисловість, найбільший споживач вапна й доломить вапна, взагалі просить про залишковий зміст ІЗ02 менше ніж 2 %.

Реакційна здатність

 

Паралельний потік матеріалу й газів згоряння протягом процесу випалу - ідеальна умова виробництва високо реактивної вапна й доломить вапна. Для спеціального виробництва пористого бетону, потрібна вапно із середньою або низькою реакційною здатністю. Пристосовуючи операційні параметри, відносини надлишку повітря й входу теплоти, середнє негашене вапно може бути зроблена в ППР - ПЕЧІ з адекватною якістю сирого каменю. Виробництво твердої негашеної вапна, однак, не можливому в цьому типі випалювальної печі.

ППР-ПІЧ має найвищу ефективність всіх сучасних випалювальних печей вапна. КПД становить 85% . Типове споживання тепла перебуває в діапазоні від 3350 до 3600 кДж(від 800 до 860 кілокалорій) на кг залежно від хімічного аналізу й розміру зерна каменю й типу палива. Термін служби футеровки випалювальної печі; ідеальний діапазон - 2:1, але можливо й більше. Від 3 до 4 років зона перехідного каналу, від 6 до 8 років зона горіння й підігріву шихти, від 9 до 12 років, зона охолодження вапна.

Зношування футеровки - менше ніж 0.3 кг на тонну зробленої вапна. Перші ППР - ПЕЧІ були побудовані більше чим 35 років тому й усе ще працюють. Незважаючи на величезний технічний розвиток, основний і унікальний принцип ППР - ВИПАЛЮВАЛЬНА ПІЧ залишається незмінним. Фактично теплова ефективність цього типу випалювальної печі не може бути поліпшена.

Найбільш важливі фактори, які роблять модернізацію Випалювальної печі, бажаної й цікавої:

• Проблеми Навколишнього середовища

• Удосконалення технології ППР - печі

• Збільшення терміну служби й безпека виробництва

• Поліпшення якості

Вузький діапазон розміру зерна каменю бажаний у роботі шахтної печі. Для використання дрібної фракції у виробництві розробили так званий метод "Система завантаження Бутерброда" для ППР - ПЕЧІ. Послідовне завантаження каменю в шарах різного розміру зменшують тиск у порівнянні із завантаженням суміші із двох кам'яних фракцій, У той же самий час якість продукту випалу поліпшено. ППР - ВИПАЛЮВАЛЬНІ ПЕЧІ були побудовані добовою продуктивністю від 100 до 600 т продукту випалу. Випалювальні печі можуть використовуватися від 50 % до 100 % їхньої номінальної потужності.



Об'єм повітря

 

ОБ'ЄМ ПОВІТРЯ підрозділяється на об'єм ПОВІТРЯ НА ГОРІННЯ (інакше називаного первинним або верхнім повітрям) і об'єм ПОВІТРЯ НА ОХОЛОДЖЕННЯ (інакше називаного вторинним або нижнім повітрям).

Повітря на горіння й на охолодження нагнітається повітродувками. Регулювання об'єму повітря здійснюється за допомогою регулювальних двигунів, Для кожної печі встановлені повітродувки з наступними приводами: 1. Повітродувки повітря на горіння.

Повітродувки змінного струму

тип НК 52 потужність 9600 м3/з різниця тиску 400 обороти 1350 об/хв привод асинхронним двигуном з пускачем тип 1АТ 315 5- 4; 160 кВт; 380У; 1473 про/хв.

повітродувка з регулюючим двигуном, постійного струму

тип НК52

потужність 9600 м/с

різниця тиску 400

обороти двигуна від 980 до 2550 про/хв

обороти повітродувки макс. 1350 про/хв.

привод, регульований двигуном постійного струму

тип ЗНК 14 А1 ; 980 про/хв, (мінімум); 2550 про/ хв.(максимум); 160 кВт, 440 У ,

включаючи охолодження.

2. Повітродувки повітря на охолодження

Повітродувки змінного струму тип HR 52 потужність 9600 мз/з різниця тиску 400 м. бар обороти 1350 об/хв привод асинхронним двигуном з пускачем ТШ1А03153-4; 160 кВт; 380У; 1473 про/хв.

повітродувка з регулюючим двигуном, постійного струму

тип НК52 потужність 9600 м/с різниця тиску 400 м. бар обороти двигуна від 980 до 2550 об/хв обороти повітродувки макс. 1350 про/хв, привод, регульований двигуном постійного струму

тип 8НК. 14 А1 ; 980 про/хв, (мінімум); 2550 про/ хв. (максимум); 160 кВт, 440 У, включаючи охолодження.

3. Повітродувки повітря на охолодження стрижневих пальників

повітродувка

тип НІ 2 потужність 1560м/с різниця тиску 70м. бар обороти 2950 об/хв привод асинхронним електродвигуном тип F250 МО2; 2950 про/хв; 55 кВт,380 У.

4. Резервні повітродувки для двох шахтних печей повітря на горіння, на охолодження й на охолодження стрижневих пальників є загальними для обох печей, розділених шиберними засувками.

Газ

 

Технічні параметри

Паливо нафтовий природний газ із теплотворною здатністю 33,94 МДж/Нм3, що утворить із повітрям вибухову суміш при концентрації порядку 5 - 15% (по об'єму).

надлишковий тиск у газопроводі подачі газу до печей - 0,35МПа Температура газу 20°С

Витрата газу

Для покриття технологічної витрати тепла в кожної двох шахтної печі при стабільній експлуатації й з урахуванням номінальної продуктивності печі необхідно: середня витрата газу 2.750 Нм /година для обох печей 5.500 Нмз/година

Для «холодного запуску» кожної печі встановлюється обігрівальний пальник, оснащений комплектом автоматики для безпечної експлуатації й програмою розпалювання. Витрата кожного пальника становить:

пальник

тиск газу на подачі 5 -15кпа

витрата газу 17 м3/година (макс.)

обігрівальний пальник

тиск газу на подачі

0,35 Мпа витрата газу

200 нмэ/година

Паливо

 

Природний газ із теплотворною здатністю 33940кДж/м. Надлишковий тиск у трубопроводі - 0,35мРа. Температура газу 20°С. Для покриття технологічного тепла, для однієї двох шахтної печі при номінальній продуктивності необхідно:

- Середня витрата газу до 2750 нм3 /год

- Для двох печей до 5500 нм3 /год

Для "холодного пуску" у піч установлюється нагрівальний пальник разом із пальником.



Запальний пальник

 

Тиск - 5 -15 кРа; Витрата газу - 17.м/год

Нагрівальний пальник

 

Тиск - 0,35 мРа; Витрата газу- 20нм3 /год

Експлуатація печі

 

Якщо при запуску нового часу випалу тиск повітря на горіння, тиск повітря на охолодження й тиск у перехідному каналі відрізняються від параметрів попереднього циклу - це вказує на не герметичність клапанів у верхній частині печі.

Якщо в однаковому режимі роботи всі параметри тиску мають тенденцію до збільшення, то це вказує на забруднення каналів.

Іншою причиною підвищення або падіння тиску є зміна фракції. Чим більше дрібної фракції або чим більше різниця між самою дрібною й самою великою фракцією, тим вище тиск. З появою різниці тиску в каналі й повітря, як на охолодження, так і на горіння між шахтами 1 і 2, але не дуже значно, те піч повинна працювати протягом 30 завантажень без зупинок.

У плині цього часу різниця в тиску звичайно падає. Виходить, у зоні перехідного каналу утворилося налипання, що тепер іде.

Якщо змін не відбувається, то потрібно попрацювати 2-3 циклу без подачі газу, для заспокоєння печі. З появою різниці тиску повітря на горіння й у перехідному каналі між шахтами й у незначному ступені повітря на охолодження, необхідно зменшити об'єм подачі газу. Існує небезпека утворення зводів. Через 2-4 циклу з меншою кількістю газу можна знову працювати в нормальному режимі. Різниця в показаннях термопари й ардометра може становити до 120 °С.При показаннях температури на ардометрі 1150-1200 °C необхідно відробити один цикл без газу. У випадку спостереження тенденції до постійного збільшення температури варто зменшити подачу газу на 2-3 нмз/година. Якщо тиск у перехідному каналі має значення 22-25 кпа необхідно відробити один цикл без газу. При зменшенні часу циклу й збільшенні продуктивності зростає кількість пилу перехідного каналу. При збільшенні кількості нижнього повітря росте температура газів, що відходять. При низькій температурі в перехідному каналі (850 -900 С) необхідно зменшити подачу повітря на горіння. Пручи подальшому спаді температури, необхідно зменшити кількість матеріалу, що завантажується. У випадку обвалення шихти в шахті, необхідно відітнути подачу палива. Якщо процес обвалення носить частий характер по ходу циклу, варто провести 2-3 циклу без подачі газу. При уведенні печі в експлуатацію домагаються одержання вапна більше низької якості (88 -90,6% Сао), щоб знати яка кількість ккал/кг Сао необхідно для одержання вапна з більше високими показниками Сао. При виявленні шматків на виході з печі й на столах продувають шахти 1-3 циклу, відтинають 1/6 або 1/2 частину заданої кількості палива від 2 до 6 разів у добу.

Вибір технічних засобів

 

­ Система керування випалом у печах ІОЦ являє собою комплекс технічних засобів, що забезпечують наступні функції;

­ забезпечення роботи печі і її механізмів у точній відповідності з вимогами технології в автоматичному режимі;

­ попередження й діагностування аварійних ситуацій, що забезпечує безпека праці й цілісність устаткування цеху;

­ візуальне відображення ходу технологічного процесу й роботи печі на екрані комп'ютера оператора;

­ запис і астросфера даних про основні параметри технологічного процесу в базі даних комп'ютера.

Автоматизована система керування технологією виробництва (надалі АСУТП) вапняно-випалювальній печі складається із трьох рівнів.

Перший рівень: комплекс засобів, для одержання даних про технологічний процес і його параметри.

Цей рівень містить у собі датчики, що здійснюють збір інформації про температуру, тиск, витрату, положення механізмів і інших параметрів процесу.

Другий рівень: програмувальний логічний контролер "SIМАТIС" 87-300 фірми SIЕМЕМ5.

Даний контролер, одержавши інформацію з першого й із третього рівнів, здійснює керування технологічним процесом по програмі, завантаженої в нього за допомогою програмуючого пристрою - програматору. Керування здійснюється шляхом подачі команд на виконавчі механізми.

Третій рівень: комплекс засобів, для відображення технологічного процесу, а також для передачі параметрів керування в контролер.

Цей рівень виконаний на базі сучасних персональних комп'ютерів промислового виконання фірми Advantech, оснащених спеціальними платами - комунікаційними процесорами для зв'язків з контролерами через шину PROFIBUS. По суті ці комп'ютери являють собою властиво робоче місце випалювача. Через ці комп'ютери здійснюється завдання параметрів і режимів роботи печі, а також здійснюється керування піччю в ручному режимі у випадку виникнення позаштатних ситуацій. Програмним забезпеченням на цьому рівні є система візуалізації In Touch7.1 американської фірми Wonder Ware.

Відповідно до поставлених завдань нам необхідно розробити контури контролю - основних технологічних параметрів (табл. 1) і керування подачею паливного газу в піч. Отже, можна синтезувати наступні контури контролю й керування (додаток Б):

1. Контур контролю й реєстрації температури в перехідному каналі. У ньому використовуються первинний датчик - пірометр радіаційного випромінювання Ardometr М250АЗ, у комплекті з перетворювачем сигналів - М5533, самописний прилад Zерагех 49 з уніфікованим вхідним сигналом 4-20 mа, сигнал з якого надходить у мікроконтролер.

2. Контур контролю тиску продувного повітря. У ньому використовується датчик тиску 62 з уніфікованим вхідним сигналом 4-20 mа, сигнал з якого надходить у мікроконтролер.

3. Контур контролю й реєстрації тиску в сполучному каналі. Складається з датчика тиску Impress 62 і самописного приладу Zераrех 49 з уніфікованим вхідним сигналом 4-20 mа, сигнал з якого надходить у мікроконтролер.

4. Контур контролю витрати повітря на горіння (верхнє повітря). Побудований на основі швидкісного витратоміра (група - гідродинамічних трубок) - вимірювальний зонд М 5-НР, у комплекті з перетворювачем перепаду тиску INDIF 51, вихідний сигнал 4-20 mа. Сигнал з INDIF 51 надходить у перетворювач INМАТ вихідний сигнал 0-20 mа, далі сигнали надходить у мікроконтролер.

5. Контур контролю тиску повітря на горіння (верхнє повітря). У ньому використовується первинний датчик тиску Impres 62 з уніфікованим вхідним сигналом 4-20 mA, сигнали з якого надходить у мікроконтролер.

6. Контур контролю витрати повітря на охолодження (нижнє повітря). Побудований на основі швидкісного витратоміра (група - гідродинамічних трубок) - вимірювальний зонд 622-5-НР у комплекті з перетворювачем перепаду тиску INDIF51 , вихідний сигнал 4-20 mа. Сигнал з INDIF51 надходить у перетворювач INМАТ , вихідний сигнал 0-20 mа, далі сигнали надходить у мікроконтролер.

7. Контур контролю тиску повітря на охолодження (нижнє повітря). У ньому використовується первинний датчик тиску Impress 62 з уніфікованим вхідним сигналом 4-20 mа, сигнали з якого надходить у мікроконтролер.

8. Контур контролю й реєстрації температури вапна із шахти. Використовується термометр опору Тсп-Рt100, вторинний що нормує преобразовательINPAL, з вихідними сигналами 4-20 mа, і прилад, що реєструє, Zераrех 49 з уніфікованим вхідним сигналом 4-20 mа, сигнал з якого надходить у мікроконтролер.

9. Контур контролю температури газів, що відходять, із шахти. Використовується термометр опору Тсп-Рt100 і вторинний перетворювач, що нормує, INPAL з уніфікованими вхідними сигналами 4-20 mа, сигнали з якого надходить у мікроконтролер.

10. Контур контролю температури природного газу. Використовується термометр опору ТСМ-50M, вторинний перетворювач, що нормує, INPAL, з вихідними сигналами 4-20 mа, і що показує (стрілочний) прилад Indicomp 2 з уніфікованим вхідним сигналом 4-20 mа, сигнал з якого надходить у мікроконтролер.

11. Контур контролю й регулювання витрати палива (природний газ). Складається з турбінного газового лічильника «Rombach» Т 150-ПРО1000, механічно пов'язаного з перетворювачем (частота/струм) WЕ-77/ ЕХ-UТ (поз. 11-2), з дискретним вихідним сигналом. Сигнал з перетворювача надходить у мікроконтролер, де поточна частота імпульсів перетвориться в поточну витрату газів, після чого дані передаються на пульт в ЕОМ, звідки вони надходять у наступний мікроконтролер, де витрата перетвориться у фотополяриметр сигнал і надходить на прилад, що реєструє, Zерагех 49 з уніфікованим вхідним сигналом 4-20 mа. У тім же мікроконтролері генерується сигнал на відкриття або закриття регулювального органа. Даний сигнал надходить на пускач АUМА 8А-07.1, що відкриває або закриває регулювальний орган.

 



Електробезпечність

Вплив електричного струму на організм людини залежить від багатьох факторів: напруги й сили струму, частоти й тривалості впливу струму, стану шкіри (суха, волога), деяких хвороб серця, характеру дотику (короткочасне - крапкове або щільне), від підлоги, на якому коштує людина (металевий, бетонний, дерев'яний). Стан сп'яніння сильно знижує опір організму електричному струму.

Поразки електричним струмом можуть відбутися як при високому, так і при низькому напругах. Статистика показує, що найбільше нещасних випадків відбувається при напругах 380 і 220 У, тобто в таких установках, де найчастіше працюють люди, що не завжди мають достатню спеціальну підготовку.

Постійний струм робить менш сильний вплив, чим змінний струм тієї ж сили. Прийнято вважати, на підставі експериментальних даних, безпечної для людини силу струму: змінного до 10 мА, постійного до 50 мА. При впливі більше високих струмів відбуваються мимовільні судорожні скорочення м'язів; людина не може самостійно відірвати руку від струмоведучої частини й, якщо йому не буде надана допомога, відбувається параліч подиху й серця.

Небезпечно не тільки безпосередній дотик до струмоведучих частин. Часто причиною поразки електричним струмом є ушкодження ізоляції струмоприймачів. У цьому випадку металевий корпус струмоприймача перебуває в контакті з оголеними струмоведучими частинами й, отже, дотик до металевого корпуса може стати такий же небезпечним, як і дотик до оголених струмоведучих частин.

До персоналу, що обслуговує електроустановки, висувають спеціальні вимоги. При прийманні на роботу з експлуатації електроустановок вступник обов'язково проходить медичні огляди, при якому перевіряють його здоров'я, відсутність хвороб, каліцтв і дефектів, при наявності яких робота з експлуатації електроустановок протипоказана.

У процесі роботи проводять повторні медичні огляди не рідше 1 рази в 2 роки. Для деяких установок, пов'язаних з підвищеною шкідливістю (наприклад, експлуатація ртутних випрямлячів, роботи верхолазів на висоті, високочастотні установки), повторні медичні огляди здійснюють 1 раз в 6-12 міс.

Після медичного огляду вступник на роботу проходить вступний (загальний) інструктаж з техніки безпеки й перевірку у кваліфікаційній комісії, що привласнює кваліфікаційну групу відповідно його знанням правил техніки безпеки й досвіду роботи й дає посвідчення на право роботи в даній електроустановці.

Установлено п'ять кваліфікаційних груп.

I група. У цю групу входять особи, пов'язані з обслуговуванням електроустановок, але не минулу перевірку знань правил техніки безпеки. Вони не мають електротехнічних знань і виразних подань про небезпеку поразки електричним струмом і запобіжним заходами. Працівників цієї групи інструктують при допуску до робіт. Працюють вони під безперервним спостереженням осіб, що мають кваліфікаційну групу II і вище.

II група. До неї відносять електромонтерів, крановиків, електрозварювачів, практикантів інститутів, технікумів і технічних училищ і практиків-електриків. Щоб одержати кваліфікацію II групи, необхідно мати стаж роботи на даній установці не менш 1 міс., певний мінімум електротехнічних знань, виразне подання про небезпеку поразки електричним струмом і основними запобіжними заходами при експлуатації електроустановок.

III група. До неї відносять електромонтерів, черговий і оперативний персонал, наладчиків, зв'язківців і практикантів інститутів і технікумів, що починають інженерів і техніків. Для одержання кваліфікації III групи працівник повинен мати не менш 6 мес. загального стажу роботи (хто закінчив технічні й ремісничі училища - не менш 3 мес., практиканти інститутів і технікумів, що починають інженери й техніки - не менш 1 міс. стажу по II групі).

Крім електротехнічних знань і виразного подання про небезпеку поразки електричним струмом, запобіжних заходах і наданні першої допомоги працівники III групи повинні знати ті розділи Правил технічній експлуатації й безпеці обслуговування (ПТЭБО), які ставляться до їхніх обов'язків, і вміти вести нагляд за роботами в електроустановках.

IV група. Для одержання IV групи працівник повинен мати стаж роботи «е менш 1 року (хто закінчив технічні й ремісничі училища-не менш 6 міс., що починають інженери й техніки - не менш 2 міс.).

Крім знань, необхідних для III групи, для одержання IV групи треба знати Правила технічній експлуатації й безпеці обслуговування, уміти вільно розбиратися у всіх елементах даної електроустановки, а також організовувати безпечне ведення робіт в електроустановках.

V група. Її привласнюють майстрам, технікам і інженерам із закінченим середнім або вищим утворенням і зі стажем роботи не менш 6 міс., а також монтерам, майстрам і практикам, що займають інженерно-технічні посади при наявності стажу не менш 5 років.

Для одержання кваліфікації V групи працівник повинен не тільки мати знання, необхідні для IV групи, і твердо знати Правила технічній експлуатації й безпеці, але й мати ясне подання про те, чим викликані вимоги кожного пункту правил, уміти організувати безпечне виробництво комплексу робіт і вести нагляд за ними при будь-якій напрузі.

Розрахунковий лист

 

Об'ємна витрата газу, наведена до нормального стану (20°С 101325Па) QHOM = 4200 м3/ч.

1. Дані для розрахунку

А - пристрій

1. Тип - діафрагма

2. Матеріал пристрою - сталь 12Х18Н9Т

3. Поправочний коефіцієнт на теплове розширення Кt = 1,0047

Б - Трубопровід

1. Поправочний коефіцієнт на теплове розширення Кt = 1,0047

2. Внутрішній діаметр D=700мм

У - Вимірюване середовище

Назва газу - природно-доменний газ

Розрахункові витрати - максимальний Qnp=4000м3/год Середній Qср= 2300м3/год

Мінімальний Qmm=1500м3/год

Середня абсолютна температура Т=290К Середній абсолютний тиск ?=110000 Па Розрахункова припустима втрата тиску Рпд=5500Па

Щільність сухого газу в нормальному стані ?н=0,8362 кг/м3

Максимально можливий тиск водяної пари при температурі t=25°C

Відносна вологість у частках одиниці ?=0,89

Відносна вологість у робочому стані ?=0,95

Коефіцієнт стискальності К=1

Проміжна величина для визначення ?=387

Щільність сухої частини газу в робочому стані рс г=0,950кг/м3

Щільність вологого газу в робочому стані ?=0,970кг/м3

Показник адіабати - 1,355

Динамічна в'язкість µ=1,241*105Па/з

Число Рейнольдса Re=304664,2

Середнє число Рейнольдса Reср=201078,37

Аркуш вихідних даних

Загальні дані

Середній барометричний тиск місцевості Рб=101325Па

Трубопровід

1. Внутрішній діаметр D20=700мм

2. Матеріал - сталь 12Х18Н9Т

Вимірюване середовище

1. Найменування: газ

2. Годинна витрата:

мах Qмmax=3200м3/год

середній Qмср= 2300м3/год

мін: Qм хв= 1500м3/год

3. Середня температура t=32°С

4. Середній надлишковий тиск Ри=5,0*10??мпа

5. Припустимі втрати тиску Рпд=0,5кпа

Розрахунок пристрою

Середній барометричний тиск місцевості (100000 - 101325 )Па

 

Рб=101325Па

 

Матеріал пристрою й ділянок трубопроводу, між якими встановлюється пристрій для води, газу, пари й гарячого повітря: сталь 12Х18Н9Т.

Ø трубопроводу при 20°С D20 вибираємо по припустимій швидкості речовини в трубопроводі.

Швидкість пари в робочих умовах V=10м/с. По обраній швидкості знаходимо ø трубопроводу

 


 

Де: Qmax - максимальна витрата речовини в робочих умовах

 

337,1мм

 

Знайдену величину округляємо до стандартного значення D=400мм

Розрахунковий мах витрата Qпр, що є верхньою межею виміру дифманометра, вибирають зі стандартного ряду (1;1,25;1,6;2;2,5;3,2;4;5;6,3;8) 10?.

У цьому випадку:

 

Qпр=4000м3/год

 

Середня витрата становить:

 

Qмср=(1/2-2/3) Qм np

 

Qм порівн=2/3*4000=2666,6 м3/год

Мінімальна витрата:

 

Qм хв.=(1/4-1/3) Qм np

Qм хв=1/4*4000=1000м3/год

 

За умовою температура пари t=32°С. В інтервалі температур (0°С - 450°С) коефіцієнт на теплове розширення дорівнює:

 

Kt=1+?t*(t-20),


Де £t=(1.38-1.74)*10¯⁶

Kt=1+1.56*10¯⁶*(320-20)=1.00468

 

Середня абсолютна температура:

 

Т=t=273

T=303K

 

Середній абсолютний тиск:

 

Ра=Ри+Рб

 

Де Ри - надлишковий тиск,

Рб - барометричний тиск.

Ра=5000000+101325=5101325 Па.

Розрахункова припустима втрата тиску:

 

Рпд=Рпд'*(Qм ін/Qmax)?

 

Де Рпд' - припустима втрата тиску;

Рпд=4500*(4000/3200)=5625Па

Щільність газу в нормальних умовах знаходимо з таблиці

Рн=0.8362кг/м3.

Показник адіабати для газу

?=0.8362-0.0001*t

Де t - температура пари

?=0.8227

Динамічну в'язкість газу знаходжу по таблиці:


µ=1.241*10¯⁵Па*с. Кг/м3

 

число Рейнольдса знаходимо по формулі:

 

Re=0.354*Qм ін/D*µ

 

Де D - діаметр трубопроводу;

Qм - максимальна витрата;

µ- динамічна в'язкість.

 

Re=0.354*3200/300*1.241*10¯⁵=4,2

 

Середнє число Рейнольдса:

 

Reср= Re*Qм порівн/Qм ін

 

Де Qм ін- максимальна витрата;

Qм порівн- середня витрата.

Re порівн=2,79

Використовуючи отримані дані, приступаю до розрахунку діафрагми. Для цього використовую наступні залежності:

 

1). ξ =1-(0.41+0.35м²)*

 

Де ?- показник адіабати

м-м- модуль пристрою.

 


2). ,

 

Де: Re - число Рейнольдса для витрати Qм ін.

3) Граничне число Рейнольдса Remm вибирають залежно від m:

 

Для 0.05

для

для 0.59

 

4) Втрата тиску Рп, Па

 

Рn=(1-1,035m) P

 

Розрахунок пристрою полягає у визначенні його діаметра d при обов'язковому виконанні наступних умов:

- стандартний максимальний перепад тиску повинен бути обраний як можна більший, тому що при цьому забезпечується сталість коефіцієнта витрати;

(a=const, якщо Reср (Remin)гр),

- стандартний максимальний перепад тиску повинен бути обраний як можна менший, тому що зі збільшенням перепаду тиску зростають безповоротні втрати тиску; перепад тиску варто вибирати з ряду: (1,0; 1,6; 2,5; 4,0; 6,3;)*10n ;

- тобто, перепад тиску потрібно вибирати з умов, що задовольняють цим вимогам; якщо втрата тиску не лімітована, стандартний максимальний перепад вибирають таким , щоб m = 0,2 (при цьому довжини прямих ділянок трубопроводу до й після пристрої виходять мінімальними);

- погрішність розрахунків не повинна перевищувати + 0.1

Таким чином, результат розрахунку діаметра пристрою вважається остаточним, якщо

 

 

Де Qм – значення масової витрати, отримане в результаті розрахунку по формулі:

 

.

 

Якщо хоча б одне з обмежень не виконується, то розрахунок потрібно скорегувати.

Алгоритм розрахунків

1. підраховуємо додаткову величину З по формулі:

 

З=

C=8.3861

 

2. для m=0.2

 

 

3. Перевіряю умову (1.17). Тому що воно виконується, задаємося перепадом тиску ∆ Р<

 


?Р=63000 Па

 

4. По формулі (1.14) визначаємо ?1=0.99426

5. Обчислюємо допоміжну величину (m?)1:

 

(mα)=З/ ε1* (1.21)

(m?)=0.0336

 

6. По формулі (1.15) визначаємо =0.6094.

7. Уточнюємо значення модуля m:

 

m=(m?)/?

m=0.055

 

8. Підраховуємо по формулі втрати тиску Рп. І порівнюємо із припустимими Рп.д

 

Рп.=49959 Па

 

Умова виконується з обраним перепадом.

9. Визначаємо значення ?2=0.99443, що відповідає модулю m2

Тому що різниця між ?1 і ?2 не перевищує 0.0005, тоді значення m1 і ?1 уважаємо остаточними.

10. Визначаємо діаметр пристрою по формулі:

 

 мм


11. По формулі обчислюємо витрата

 

 кг/год

 

По формулі обчислюємо погрішність обчислення

 

,

 

при цьому виконалася умова

 

 

Після розрахунку пристрою знаходимо нижню робочу ділянку шкали дифманометра Qм прmin, на якому :

 

Qм прmin= .

 









Висновок

 

Порівняльний аналіз технологічних параметрів отриманих у період досвідченої експлуатації й базовим варіантом приводиться в таблиці 2.

Приклад розрахунку параметрів процесу:

Витрата газу

Період випалу

Час реверсії

Об'єм повітря на горіння

Об'єм повітря на охолодження

Маса завантаження

Маса що вивантажується вапна

507 нм/цикл 840 сек

31000 нм3/година 18000нм3/година 9,600 кг/цикл 5,452кг/цикл

Добова продуктивність; 86400*5,4527(840+ 100)-500т вапна в добу

Витрата тепла: 507нмВ цикл* 36043кДж/м3 5,452кг/вапна в цикл

Надлишок повітря на горіння: 31000 нм у год.*840сек/3600___________ 507нм3/цикл*36043кДж/м3*1,Н/4200нм3/кДж =3352 кДж/кг вапна(800 ккал/кг вапна) =1,45

 

Таблиця 2.

Показники технологічного процесу Розмірність Прототип Серія №1 Серія №2 Серія №3 Серія №4 Серія №5
Вид палива

Природний газ

Витрата умовного палива кг/т 170 111 112 113 114 120
Теплота згоряння КДжм* 35300 36043 36043 36043 36043 36043
Коефіцієнт надлишку повітря   1,2 1,2 1,3 1,4 1,5 1,6
Температура в перехідному каналі °З 1200 940 950 1100 1170 1200
Температура газів, що відходять °с 315 70 75 110 120 150
Характеристика вапна СаО+М§О ППП Час гасіння мін 85-95 2+5 3+5 85+93 3+7 4+8 92+95 2+5 3+5 92+95 2+5 3+5 92+95 2+5 3+5 92+95 2+5 3+5
Питома витрата газу нм3 149 97 98.5 99,2 100 105

 

Подачу вапняку на випал роблять порціями по 4,7т через 780+100 нм/т сек у кожну шахту одночасно. Аналіз отриманих даних свідчить, що оптимальні теплотехнічні параметри роботи ГШР печі досягаються при питомій витраті газу в межах 98,5+100 нм/т вапна й коефіцієнті співвідношення газ-повітря 1, 3-І ,5 димових газів забезпечують, що температуру -, у перехідному каналі°950+1170 С и°75+120 С на виході з печі.

Підвищення витрати газу понад 100 нм/т вапна не поліпшує характеристик отриманого вапна, а зменшення витрати газу менш 98,5 нм /т вапна приводить до погіршення якості продукції.


Список літератури

 

1. Виробництво вапна в шахтної печі. Технологічна інструкція ТИ 13-2002. Розроблена І. Н. Фентисовим, О. М. Шебаниц. – К., 2002

2. О.В.Монастирів, О.В.Олександров. Печі для виробництва вапна. – К., 2003

3. Олійник О.В. Технологічна інструкція 81. – К., 2002

 

Курсова робота

На тему

"Опис конструкції автоматизації випалювальної печі"



ЗМІСТ

Введення

1. Опис конструкції конкретного об'єкта автоматизації й

технологічного процесу

1.1. ППР - Випалювальна піч

1.2. Якість вапняку

1.3. Залишковий З2

1.4. Реакційна здатність

1.5. Об'єм повітря

1.6. Завантаження вапняку у вагові дозатори

1.7. Газ

1.8. Паливо

1.9. Запальний пальник

1.10. Нагрівальний пальник

1.11. Експлуатація печі

1.12. Вапняна піч як об'єкт керування

2. Вибір технічних засобів.

3. Значення принципової схеми контуру контролю

4. Техніка безпеки й охорона праці

5. Розрахунковий лист

Висновок

Список літератури



Введення

 

Проектування автоматизованих систем керування технологічними процесами вимагає глибоких знань і практичного засвоєння методів синтезу автоматичних систем керування. Завдання синтезу АСУ зважуються на підставі динамічних властивостей об'єктів керування й вимог, пропонованих до систем.

Розвиток сучасного металургійного виробництва супроводжується інтенсифікацією технологічних і виробничих процесів. Створення великих металургійних агрегатів і їхніх комплексів дозволяє більш ефективно використовувати сировину, паливо, капіталовкладення. У той же час здійснювати керування металургійними процесами в більшому й складному технологічному об'єктах без використання новітніх методів і засобів керування - неефективно або взагалі неможливо.

Ефективним засобом керування технологічними об'єктами є системи централізованого керування, що використовують обчислювальну й керуючу техніку. Такі системи керування одержали найменування автоматизованих систем керування технологічними процесами. АСУ ТП містить у собі більшу область систем керування технологічними процесами з різним ступенем звільнення людини від функцій контролю й керування.

АСУ ТП являють собою якісно новий щабель розвитку засобів і методів керування технологічними об'єктами, тому що в них використовуються технологічні й техніко-економічні параметри й критерії, а не тільки технічні, як це мало місце раніше. В АСУ ТП втілені досягнення локальної автоматики, систем централізованого контролю, електронної й обчислювальної техніки. Крім того, АСУ ТП робить загальну централізовану обробку первинної інформації в темпі протікання технологічного процесу, після чого інформація використовується не тільки для керування цим процесом, але й перетвориться у форму, придатну для використання на вищестоящих рівнях керування для рішення оперативних завдань.

Тому що АСУ ТП виконує й економіко-інформаційні функції вона здобуває величезне значення в керуванні агрегатами й процесами.



Опис конструкції конкретного об'єкта автоматизації й технологічного процесу

 

Вапно - один із ключових елементів у житті. Цей природний матеріал залучений у виробництво більшості сучасних виробів. Виробництво стали, золота, срібла, міді й пластмас, а також багатьох хімічних виробів і харчових продуктів. Найбільш важливі області застосування вапна й доломіту вапна:

­ Металургія

­ Кольорові метали

­ Будівництво

­ Хімічна промисловість

­ Харчова промисловість

­ Сільське господарство

­ Агрономія

­ Медицина

­ Обробка стічних вод.

По усьому світі виробляється більше чим 120 мільйонів тонн у рік вапна й доломіту вапна. Чорна металургія - первинний споживач із щорічним попитом приблизно 40 мільйонів тонн.

Високоякісний вапняк містить від 97 до 99 % Сас3. Вимагає приблизно 1.75 тонни вапняку, щоб зробити одну тонну доломіту. Високоякісний доломіт містить 40 - 43 % МgСО3 і 57 - 60 % СаСО3. Випал вапняку й доломіту - простий хімічний процес. Нагрівання карбонату і його розкладання відбувається згідно відповідного рівняння.

СаС03 + приблизно 3180 кДж (760 кілокалорій) = СаО + З2,

3) 2 + приблизно 3050 кДж (725 кілокалорій) - СаО(МgО) + 2 З2,

Температура розкладання залежить від парціального тиску в атмосфері процесу. В атмосфері газу згоряння, нормального тиску й 25 % З2, розкладання вапняку починається при 810°С, в атмосфері 100 % З02, початкова температура розкладання була б 900°С. Доломить розкладається у двох стадіях, що починаються приблизно при 550°С для МgСО3 і приблизно 810°С для СаСО3

Щоб повністю обпалювати вапняк і не мати ядро, теплота, через поверхні вапняку повинна проникнути до ядра. Температура 900 °С повинна бути досягнута в ядрі принаймні протягом короткого періоду часу, тому що атмосфера усередині матеріалу - чистий З02. Кам'яна поверхня повинна бути нагріта більше чим нз 900 °С, щоб підтримати необхідний температурний градієнт і перебороти ефект ізолювання спаленого матеріалу на поверхні вапняку. При одержанні вапна поверхнева температура не повинна перевищити 1100 1150°С, інакше відбудеться рекристалізація СаО і як наслідок - більше низька реакційна здатність продукту й зміни властивостей обпаленої вапна.

Деяка витримка або час витримки потрібні, щоб передати теплоту від газів згоряння до поверхні вапняку й потім від поверхні до ядра вапняку. Більші камені вимагають більше тривалого часу випалу. Випал у більше високих температурах зменшує необхідний час витримки. Однак занадто високі температури несприятливо торкнуться реакційної здатності виробу. Відношення між температурою горіння й часом витримки, необхідного для різної фракційної сполуки показується далі.

Фракція Температура Випалу Приблизний час

[Мм] [°З] [годинники]

50 1200 0.7

1000 2.1

100 1200 2.9

1000 8.3

Устаткування для виробництва вапна

Використовуються два типи випалювальних печей, щоб обпалити вапняк і доломить у сучасній промисловості:

Ротаційні (обертові) випалювальні печі

Вертикальні або шахтні печі.

Ротаційні випалювальні печі з підігрівником, звичайно переробляють вапняк фракції 6-50 мм. Тепловий баланс цього типу випалювальних печей характеризований досить високими втратами з газами, що відходять, і через горловину випалювальної печі. Втрати з газами, що відходять, перебувають у діапазоні від 20 до 25% , втрати через кожух випалювальної печі від 15 до 20% необхідного тепла. Тільки приблизно 60% паливної енергії, що подається у випалювальні печі з підігрівником, використовуються для процесу випалу безпосередньо.

Для всіх типів вертикальних одно шахтних печей має нестійкість між теплотою, вилученої від зони випалу й теплоти, необхідної в зоні прогріву. Навіть із ідеальним процесом випалу (з надлишком повітря 1.0) газ, що відходить, з температурою°100 С може бути тільки з вапняком, що містить менше ніж 88 % Сасоз. Однак, вапно, зроблене з такого вапняку, має обмежену область застосування. У вапняках, на практиці, набагато більше високий зміст карбонату, більше висока температура газу, що відходить, при виробництві, що є наслідком надлишку теплоти в зоні прогріву. Як же може надлишкова теплота, у зоні випалу випалювальної печі використовуватися, щоб мінімізувати споживання теплоти і як сучасні типи випалювальної печі відповідають цьому аспекту. Зроблене рішення цій проблемі - Регенеративна Випалювальна піч Вапна (ВИПАЛЮВАЛЬНА ПІЧ).

 

ППР - випалювальна піч

 

Існують два головних типи вертикальних шахтних печей. Одна шахта протистоїть потоку, що нагріває випалювальну піч і шахта з паралельними потоками, що нагрівають випалювальну піч. Стандарт ППР - ВИПАЛЮВАЛЬНА ПІЧ - випалювальна піч із двома шахтами чергуючи палаюче й не палаючу дію шахти. Є дві ключових характеристики ППР - ПЕЧІ:

1) паралельний потік гарячих газів і каменю в зоні випалу;

2) регенеративний прогрів усього повітря для горіння в процесі.

Випалювальна ППР - піч ідеально підходить для виробництва, високо реактивної вапна й доломить вапна через умови, створених паралельним потоком каменю й газів згоряння в "палаючій шахті". Додатково, регенеративний процес забезпечує найнижче споживання тепла всіх сучасних випалювальних печей.

Оскільки кількість охолодження повітря - не досить для повного згоряння палива, додаткове повітря, повинен бути поданий через бічні пальники. Як у цьому типі випалювальної печі паливо подається в нижній частині зони випалу (де матеріал уже обпалений) температура в цій області значно вище, ніж потрібно для виробництва високо-реактивної вапна.

У ППР випалювальних печах паливо подається у верхню частину зони випалу й виходу газів згоряння, паралельно матеріалу. Оскільки паливо уведене у верхній коней зони випалу, де матеріал може поглинати більшість теплоти звільняється паливом температура в зоні випалу - звичайно 950°С. Через це, паралельне нагрівання потоку - краще рішення по виробництву реактивного вапна й доломить вапна.

Друга важлива характеристика ППР - ПЕЧІ - регенеративний підігрів повітря для горіння. У випалювальних печах із зустрічним потоками, повітря для горіння - підігрівається в зоні, що прохолоджується, в обпаленому вапні. Однак прогрів обмежений ентальпією вапна. У зустрічному процесі нагрівання потоку є надлишок тепломісткості придатного до вживання, умісту в газі, що відходить, що не відновлений до виснаження. Деякі окремі проекти шахтної печі, тому включили рекуператори, щоб повернути це відпрацьоване тепло, але такі теплообмінники сприйнятливі до руйнувань, викликаними пилом, що втримується в гарячих газах, що відходять.

Регенеративний процес вимагає двох зв'язаних шахт. Кожна шахта підлегла двом різним режимам роботи, "горіння" і "не горіння". Одна шахта працює на "горіння" і одночасно, друга шахта працює в противотоці. Кожна шахта проводить рівну кількість часу в режимах роботи "не горіння" і "горіння".

В "палаючому способі", шахта характеризована паралельним потоком газів згоряння й сирого каменю, беручи до уваги, що, в "не палаючому" способі шахта характеризована потоком сирого каменю й газів, що відходять.

Регенеративний прогрів повітря для горіння робить теплову ефективність випалювальної печі фактично незалежної від фактора надлишку повітря для горіння. Це значно спрощує регулювання правильної довжини полум'я, щоб зробити бажану якість вапна. Більша кількість надлишку повітря - більше коротке полум'я, і менша кількість надлишку повітря - більше довге полум'я. Довжина полум'я - один із ключових факторів, щоб управляти реакційною здатністю негашеної вапна. Взагалі короткий факел і більше гарячий вогонь зменшує реакційну здатність обпаленого виробу.

Дві шахти, позначили 1 і 2, містять матеріал, що буде обпалений. Шахти по черзі або одночасно наповнюють вапняком залежно від місткості випалювальної печі. Вапно вивантажується безупинно з обох шахт. Паливо подається тільки в одну із двох шахт. Наприклад шахта № 1 палаюча шахта й шахта № 2 не палаюча шахта. Паливо подається через газові труби, фурми, які вертикально простираються до зони прогріву. Більше низький кінець труби, фурми, відзначає перехід до зони випалу від зони прогріву. Паливо уведене через ці фурми й рівномірно розподілено по всій області шахти.

Повітря для горіння подається під тиском нагорі зони прогріву вище футеровки. Вся система герметична. Повітря для горіння - підігрівається каменем у регенераторі (зона прогріву) до змішування з паливом. Повітряно-паливне полум'я перебуває в прямому контакті з матеріалом випалу, оскільки це проходить через зону випалу від верху до низу (паралельне нагрівання потоку).

Теплота передається від газів каменю в не палаючій шахті. гази, Що Відходять, підігрівають футеровку в зоні прогріву й підготовляють шахту до наступного циклу горіння в цій шахті.

Зміна від "горіння" до "не горіння" називається «періодом перемикання». Протягом кожного «періоду перемикання» зважена кількість вапняку наповнює випалювальну піч. Продукт випалу вивантажується з обох шахт безупинно під час циклу випалу столами розвантаження в герметичний бункер. Повітря на охолодження безупинно подається знизу в обидві шахти, щоб зменшити температуру виробу до вивантаження в бункер вапна. Під час перемикання, коли випалювальна піч разгерметизована, виріб вивантажується з бункера на віднаходити й конвеєра.

Чудова теплова конструкція ППР - ПЕЧІ може бути задовільно доведена за допомогою балансу теплоти. Сума ефективної теплоти, тобто теплоти, необхідної для розкладання, і теплових втрат забезпечує теплову потребу випалювальної печі. Теплові втрати складаються;

• Втрата через футеровку випалювальної печі рівняється приблизно 170 кДж(40 кілокалорій) / кг вапна,

• Тепломісткість негашеної вапна рівняється приблизно 80 кДж (20 кілокалорій) / кг вапна при розвантаженні температура 100°С,

• Тепломісткість, уміст у газах, що відходять, приблизно 290 кДж (70 кілокалорій) / кг вапна при розвантаженні температура°100 С.

Оскільки випалювальна піч не має ніякого переміщення, як ротаційна випалювальна піч, втрати через стіни може бути зменшена до мінімуму, використовуючи відповідну властивість теплоізоляційного вогнетриву. Додаткова ізоляція, щоб далі зменшити стінні втрати, була б занадто дорога.

Достатня кількість повітря на охолодження використовується, щоб зменшити температуру обпаленої вапна в зоні, що прохолоджується. Нагріте повітря згодом використовується в процесі, таким чином, що поліпшує ефективності випалювальної печі.

Хоча теоретично можливо зменшити температуру газу, що відходить, нижче°100 С, це не бажано через ущільнення й проблеми корозії при дії в діапазоні крапки роси газів.

Розгляд цих критеріїв проекту для теплових втратою випалювальної печі при виробництві вапна з 96 % Сао повна теплова вимога - приблизно 3500 кДж (840 кілокалорій) / кг.

ППР - випалювальні печі типово розробляються із двома шахтами прямокутної або круглої форми. Шахти зв'язані сполучним каналом у нижній частині зони випалу. Сполучний канал служить як транспортний трубопровід, щоб дозволити гарячим газам виходити з "палаючої шахти" і входити в "не палаючу шахту".

ППР - ПЕЧІ із двома шахтами використовують вапняк фракції 40 мм - 120 мм. Коли потрібне підвищення продуктивності, використовується вапняк фракції менше ніж 40 мм , трьох шахтна піч. Маленька фракція створює більший тиск, і збільшує тиск усередині випалювальної печі. Коли використовують три шахти, що відходять гази з палаючої шахти розподіляються у дві шахти, таким чином, відбувається скорочення газової швидкості й зниження тиску приблизно втроє. Технічний розвиток і досвід дозволили використовувати випалювальних печей із двома шахтами майже для всіх умов і усунули потреба у випалювальних печах із трьома шахтами.

ППР-ПІЧ працює під тиском, тому сталевий корпус повинен бути герметичний. Всі відкриття нагорі випалювальної печі для завантаження вапняку й поду шахт для вивантаження вапна закриті гідравлічними засувками. Вузький діапазон розміру каменю ідеальний для будь-якої випалювальної печі, але, через руйнівні властивості каменю, що широко змінюється розмір по фракції - типова ситуація в кар'єрі. ППР-ПІЧ може обпалювати широкий діапазон по фракції через складну систему завантаження. Їхнє співвідношення 4:1. Мінімальний кам'яний розмір для стандартного типу ППР-ПІЧ - приблизно 25 мм із максимальним розміром 125 мм. При відповідному встаткуванні завантаження й подачі каменю, максимальний розмір - 180 мм.



Якість вапняку

 

Що стосується всіх типів вертикальних шахтних печей використання твердих, високоякісних, чистих вапняків - ідеальна умова для безаварійної роботи ППР - ПЕЧЕЙ. Однак, внаслідок того, що шахти ППР - ПЕЧІ - фактично труба без будь-яких пристроїв, які могли утрудняти вільний потік вапняку й вапна, рух матеріалу - повільне й однорідне стирання. Це означає, що, і м'який вапняк може бути обпалений у ППР - ПЕЧІ.

Високоякісний вапняк із послідовними хімічними властивостями часто не доступні або недостатні. Зміна змісту карбонатів і домішок може привести до перевитрати при виробництві в ППР - печі.

Залишковий з2

ППР - ПІЧ дозволяє робити вапно із залишковими З02 0.5 %, у деяких випадках навіть нижче. Сталеливарна промисловість, найбільший споживач вапна й доломить вапна, взагалі просить про залишковий зміст ІЗ02 менше ніж 2 %.

Реакційна здатність

 

Паралельний потік матеріалу й газів згоряння протягом процесу випалу - ідеальна умова виробництва високо реактивної вапна й доломить вапна. Для спеціального виробництва пористого бетону, потрібна вапно із середньою або низькою реакційною здатністю. Пристосовуючи операційні параметри, відносини надлишку повітря й входу теплоти, середнє негашене вапно може бути зроблена в ППР - ПЕЧІ з адекватною якістю сирого каменю. Виробництво твердої негашеної вапна, однак, не можливому в цьому типі випалювальної печі.

ППР-ПІЧ має найвищу ефективність всіх сучасних випалювальних печей вапна. КПД становить 85% . Типове споживання тепла перебуває в діапазоні від 3350 до 3600 кДж(від 800 до 860 кілокалорій) на кг залежно від хімічного аналізу й розміру зерна каменю й типу палива. Термін служби футеровки випалювальної печі; ідеальний діапазон - 2:1, але можливо й більше. Від 3 до 4 років зона перехідного каналу, від 6 до 8 років зона горіння й підігріву шихти, від 9 до 12 років, зона охолодження вапна.

Зношування футеровки - менше ніж 0.3 кг на тонну зробленої вапна. Перші ППР - ПЕЧІ були побудовані більше чим 35 років тому й усе ще працюють. Незважаючи на величезний технічний розвиток, основний і унікальний принцип ППР - ВИПАЛЮВАЛЬНА ПІЧ залишається незмінним. Фактично теплова ефективність цього типу випалювальної печі не може бути поліпшена.

Найбільш важливі фактори, які роблять модернізацію Випалювальної печі, бажаної й цікавої:

• Проблеми Навколишнього середовища

• Удосконалення технології ППР - печі

• Збільшення терміну служби й безпека виробництва

• Поліпшення якості

Вузький діапазон розміру зерна каменю бажаний у роботі шахтної печі. Для використання дрібної фракції у виробництві розробили так званий метод "Система завантаження Бутерброда" для ППР - ПЕЧІ. Послідовне завантаження каменю в шарах різного розміру зменшують тиск у порівнянні із завантаженням суміші із двох кам'яних фракцій, У той же самий час якість продукту випалу поліпшено. ППР - ВИПАЛЮВАЛЬНІ ПЕЧІ були побудовані добовою продуктивністю від 100 до 600 т продукту випалу. Випалювальні печі можуть використовуватися від 50 % до 100 % їхньої номінальної потужності.



Об'єм повітря

 

ОБ'ЄМ ПОВІТРЯ підрозділяється на об'єм ПОВІТРЯ НА ГОРІННЯ (інакше називаного первинним або верхнім повітрям) і об'єм ПОВІТРЯ НА ОХОЛОДЖЕННЯ (інакше називаного вторинним або нижнім повітрям).

Повітря на горіння й на охолодження нагнітається повітродувками. Регулювання об'єму повітря здійснюється за допомогою регулювальних двигунів, Для кожної печі встановлені повітродувки з наступними приводами: 1. Повітродувки повітря на горіння.

Повітродувки змінного струму

тип НК 52 потужність 9600 м3/з різниця тиску 400 обороти 1350 об/хв привод асинхронним двигуном з пускачем тип 1АТ 315 5- 4; 160 кВт; 380У; 1473 про/хв.

повітродувка з регулюючим двигуном, постійного струму

тип НК52

потужність 9600 м/с

різниця тиску 400

обороти двигуна від 980 до 2550 про/хв

обороти повітродувки макс. 1350 про/хв.

привод, регульований двигуном постійного струму

тип ЗНК 14 А1 ; 980 про/хв, (мінімум); 2550 про/ хв.(максимум); 160 кВт, 440 У ,

включаючи охолодження.

2. Повітродувки повітря на охолодження

Повітродувки змінного струму тип HR 52 потужність 9600 мз/з різниця тиску 400 м. бар обороти 1350 об/хв привод асинхронним двигуном з пускачем ТШ1А03153-4; 160 кВт; 380У; 1473 про/хв.

повітродувка з регулюючим двигуном, постійного струму

тип НК52 потужність 9600 м/с різниця тиску 400 м. бар обороти двигуна від 980 до 2550 об/хв обороти повітродувки макс. 1350 про/хв, привод, регульований двигуном постійного струму

тип 8НК. 14 А1 ; 980 про/хв, (мінімум); 2550 про/ хв. (максимум); 160 кВт, 440 У, включаючи охолодження.

3. Повітродувки повітря на охолодження стрижневих пальників

повітродувка

тип НІ 2 потужність 1560м/с різниця тиску 70м. бар обороти 2950 об/хв привод асинхронним електродвигуном тип F250 МО2; 2950 про/хв; 55 кВт,380 У.

4. Резервні повітродувки для двох шахтних печей повітря на горіння, на охолодження й на охолодження стрижневих пальників є загальними для обох печей, розділених шиберними засувками.


Дата: 2019-07-24, просмотров: 202.