Общие сведения об электроустановках
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Содержание

 

Общая часть

Введение

1.1 Общие сведения об электроустановках

1.1.1 Вводная часть

1.1.2 Линии электрических передач

1.1.3 Распределительные устройства

1.2 Определение вариантов главной схемы

1.3 Общие сведения о высоковольтной аппаратуре

1.3.1 Центр питания

1.3.2 Системы сборных шин

1.3.3 Разъединители и ножи заземления

1.3.4 Высоковольтные выключатели

1.3.5 Трансформаторы тока

1.3.6 Трансформаторы напряжения

1.3.7 Силовые трансформаторы

2. Расчетная часть

2.1 Расчет и выбор силовых трансформаторов

2.2 Расчет потерь и выбор токоведущих частей на стороне 0,4 кВ

2.3 Расчет и выбор автоматических выключателей

2.4 Расчет и выбор элементов защиты и контроля в цепь 0,4 кВ

2.5 Расчёт токов короткого замыкания на стороне 0,4 кВ

2.6 Расчёт ввода и выбор высоковольтного оборудования

Заключение

Литература



Введение

 

Понятие «Энергия» произошло от греческого «energious»-мощь, сила, тепло. Электрическая энергия является наиболее удобным и дешёвым видом энергии. Широкое распространение электрической энергии обусловлено относительной лёгкостью её получения, преобразования, и возможностью передачи её на большие расстояния.

Энергетика, на сегодняшней день, является одной из важнейших структурных единиц, совокупность которых, поддерживает развитие технологического процесса и играет большую роль в организации человеческой цивилизации на данный момент.

В энергетике существует такое понятие как «Энергетическая система»- это совокупность устройств и установок, предназначенных для выработки, передачи, распределения и потребления электроэнергии и теплоэнергии, связанных между собой электрическими и тепловыми сетями. А также есть термин «Электрическая система»- это часть энергосистемы: РУ, генераторы, ЛЭП, приёмники и потребители электрической энергии. Отдельные энергосистемы имеет смысл объединения между собой, т.к. это облегчает задачу резервирование мощностей и повышает общий технологический уровень эксплуатации электроустановок.

В 1927 году на территории БССР уже действовала 141 электрическая станция, общей мощностью до 15 Мватт/час.

В 1931 году была организована Белорусская энергосистема.

К началу 1940 году мощность станций достигла 120 Мватт/час. А также в то время была построена первая крупная ЭС БелГРЭС, мощность 34,5 Мватт/час.

К 1944 году начались работы по восстановлению разрушенных во время Великой Отечественной Войны электростанций в уже освобождённых городах Минске, Витебске, Гомеле, Могилёве и Бресте.

В октябре 44-го были созданы организации, носившие названия «Управление энергетическим хозяйством», «БеларусьЭнерго». А также «МинскЭнерго», «БрестЭнерго», «ВитебскЭнерго», «ГомельЭнерго», «МогилёвЭнерго» и «ГродноЭнерго».

Ныне в Республике Беларусь насчитывается более 25 крупных действующих установок по выработке электроэнергии с общей установленной мощностью около 7,8 Гватт/час. Крупнейшей из них является Новолукомльская ГРЭС, общей мощностью 2412 Мватт/час.

Но по-прежнему, наша Республика сейчас не способна полностью обеспечить себя электрической энергией самостоятельно. Часть электроэнергии мы закупаем у других государств, в основном, у нашего «соседа» Российской Федерации.

На сегодняшний день сфера изучения энергетики Беларуси занимает далеко не последнее место в инфраструктуре и, в частности, в экономике.

Уделяется не маловажная роль использования ядерной энергетики в мирных целях (для производства электроэнергии). Планируется строительство АЭС на территории нашей Республики. Ввод в эксплуатацию первого энергоблока (ядерного реактора) станции запланирован на 2016 год.



Общие сведения об электроустановках

Вводная часть

Электроустановки – это совокупность машин, аппаратов, линий и вспомогательного оборудования; предназначенного для производства, преобразования, передачи, трансформации, и распределения электроэнергии; а также преобразования её в другой вид энергии.

Выделяют 2 вида электрических установок:

- ЭУ до 1000 вольт;

- ЭУ свыше 1000 вольт.

Такое разделение связано, с различием типов и конструкций аппаратов, а также с разницей в условиях безопасности и требованиях, предъявляемых при сооружении и эксплуатации электроустановок различных напряжений.

Также электроустановки потребителей характеризуются номинальным напряжением (Uном). Номинальным напряжением генераторов, трансформаторов, сетей и приёмников электроэнергии (электрических двигателей, ламп и т.п.) называется то напряжение, при котором они предназначены для нормальной работы.

Для систем электроснабжения сетей и электроприёмников (ЭП) напряжением до 1 кВ согласно ГОСТ 2128-83 сети и приёмники электроэнергии бывают напряжением: 220, 380, 660 вольт. А наибольшее рабочее напряжение может быть: 230, 400, 690 вольт.

Различают переменное напряжение однофазного тока (В):

A. 6;

B. 12;

C. 27;

D. 40

E. 60;

F. 110;

G. 220.

Переменное напряжение 3-фазного тока (В):

a. 40;

b. 60;

c. 220;

d. 380;

e. 660.

Напряжение постоянного тока (В):

- 6;

- 12;

- 27;

- 48;

- 60;

- 110;

- 220;

- 440.

В промышленных электроустановках напряжением до 1 кВ распространена 3-х и 4-х проводная система. Она позволяет питать однофазные и трёхфазные приёмники, включенные на линейное и фазное напряжение.

Для выработки электрической энергии служат электростанции. Это предприятия и установки, предназначенные для производства электроэнергии.

В зависимости от вида энергии, потребляемой первичным двигателем, электрические станции подразделяются:

v Тепловые;

v Гидро;

v Атомные;

v Гидроаккумулирующие;

v Газотурбинные;

v Маломощные ЭС местного масштаба.

Топливом для электростанций служат природные богатства. Например: уголь, торф, вода, ветер, солнце, а также атомная реакция (расщепление ядер урана, плутония).

Огромную роль в системах электроснабжения играют электрические подстанции – электроустановки, предназначенные для преобразования и распределения электроэнергии. Электрические подстанции промышленных (и не только) предприятий – это важные звенья в системе электроснабжения. Поэтому рассмотрение работы электрических станций и подстанций является очень важным этапом в подготовке грамотного специалиста в области энергетики.

Электрические подстанции бывают открытые либо закрытые.

 

Линии электрических передач

Для передачи электроэнергии на расстояния применяются линии электрических передач (ЛЭП). Они бывают 2-х типов:

§ Воздушные (ВЛЭП);

§ Кабельные (КЛЭП).

Для передачи электроэнергии напряжением до 10 кВ (редко до 35 кВ) используются кабельные линии, проложенные в земле. Изоляция надевается на каждую фазу линии, затем на весь кабель, а потом ставится внешняя оболочка.

Чем больше напряжение и ток, тем толще больше жилы, толще изоляция и прочнее оболочка. В КЛЭП на высокое напряжение оболочка используется свинцовая, а в качестве брони применяют сталь.

КЛЭП обычно применяют в больших населённых пунктах (городах).

Для передачи электроэнергии напряжением свыше 10 кВ (10,35,110,220,330,500,750,1150 кВ) вводятся в эксплуатацию воздушные линии, протянутые на опорах. Проводники, как правило, изготавливаются неизолированными. А также они могут быть по системе СИП. ВЛЭП также могут использоваться на напряжение и ниже 10 кВ. Их специальным образом скручивают и подвешивают на опорах. Для передачи высокого напряжения на большие расстояния провода покрывают смазкой повышенной горючести.

Основной металл, служащий для изготовления проводов ЛЭП - это медь и алюминий.

 

Центр питания

Центр питания – это совокупность электрических соединений и ветвей, а именно, линий электрических передач, питающих данную подстанцию.

Как правило, число ветвей зависит от категории надёжности электроснабжения электроприёмников. При первой и второй категории электроснабжения центр питания (ЦП) должен содержать не менее 2-х ветвей ввода. А для электроустановок специального назначения, имеющих 1 категорию должен быть предусмотрен 3 независимый источник питания.

ЗТП 10/0,4 кВ выполняются в основном 2-х трансформаторными, содержащими 2 ветви питания (фидера), а также систему АВР (автоматическое включение резерва).

В случае аварий на каком либо вводе подстанции (возникновение коротких замыканий, перегрузки, форс-мажорные явления) 2 ветви ввода ЦП могут взаиморезервировать друг друга.

Система сборных шин

Система сборных шин – это совокупность токоведущих частей, содержащая общий ввод, и предназначенная для распределения нагрузок на потребителя.

Присутствует на каждой ТП. Чаще всего встречается вариант с одной системой шин, секционированную выключателем. Это позволяет производить ремонтные работы в любой точке, не отключая потребителей от источника питания. Тем самым, данный выбор шин повышает надёжность электроустановки.

 

Высоковольтные выключатели

Высоковольтный выключатель – это контактный коммутационный аппарат, служащий для отключения токов нагрузки в сети высокого напряжения.

ВВ бывают:

· Воздушные автоматический;

· Масляные и маломасляные;

· Вакуумные;

· Выключатели нагрузки;

· Генераторные;

· Элегазовые;

· Баковые;

· Электромагнитные.

Характеризуются номинальным током и номинальным напряжением, током электротермической и электродинамической стойкости, тепловым импульсом, временем размыкания контактной группы.

На сегодняшний день предпочтение уделяется вакуумным выключателям, нежели, масляным либо выключателям нагрузки.

Появление на трансформаторных подстанциях масляных выключателей повысило пожароопасность распределительного устройства, а также потребовало огромных затрат на содержание маслохозяйства. Кроме того, следует отметить, что после трех-пяти отключений масляный выключатель, кроме замены масла, требует переборки контактной группы.

Эти вопросы снимаются при замене выключателей нагрузки, современными малогабаритными вакуумными выключателями, а не привычными масляными, так как вакуумные выключатели имеют следующие характеристики:

· механический ресурс и ресурс по коммутационной стойкости современных выключателей - 50000 циклов «ВО» при номинальном токе и 100 циклов «ВО» при токах короткого замыкания до 20 кА;

· низкие трудозатраты на эксплуатационное обслуживание и ненадобность замены изнашивающихся деталей контактной системы;

· меньшие габариты и масса, нежели выключатели нагрузки или масляные.

Это позволяет рассматривать замену части выключателей нагрузки на подстанциях, на вакуумные выключатели. Но увеличение в сети количества выключателей приводит: к увеличению материальных затрат на их содержание; и к значительному повышению времени действия защит на питающих центрах, а увеличивать его более 1,5 сек. недопустимо по термической стойкости кабелей. Заметим, что по термической стойкости токам КЗ, ячейки КРУ на ЦП не допускают превышение времени более 1 сек.

 

Трансформаторы тока

Трансформаторы тока в цепях переменного тока и высокого напряжения, служат для соединения измерительной аппаратуры с токоведущими частями. И используются тогда, когда включение измерительной аппаратуры непосредственно в первичные цепи электроустановок недопустимо по условиям безопасности. Его назначение: уменьшение первичного тока до значений, наиболее удобных для измерительных приборов и реле, а также для отделения цепей измерения и защиты от первичных цепей высокого напряжения.

К вторичной обмотке трансформатора тока подключается измерительные приборы; в данном случае – амперметр. Конструкция ТТ такова, что независимо от тока в первичной обмотке, во вторичной I=const (5А). В цепи вторичной обмотки обязательно должна стоять перемычка, так как разрыв цепи во вторичной обмотке не допустим по правилам ТБ. Первичной обмоткой является сама токоведущая часть электроустановки. Ток в первичной обмотке пропорционален току во вторичной обмотке. Трансформаторы тока работают в режиме близком к режиму короткого замыкания, и сопротивление его очень влияет на точность измерений. Трансформатор тока характеризуется номинальным коэффициентом трансформации, т.е. отношением тока в первичной обмотке, к току вторичной обмотки.

 

Трансформаторы напряжения

Трансформаторы напряжения используются в наружных и внутренних электроустановках напряжением от 0,4 до 1250 кВ. Они предназначены для включения катушек напряжений и аппаратов защиты, измерения и контроля напряжения, расширение пределов измерения приборов, а также для отделения цепей измерительных приборов и аппаратов защиты от сети высокого напряжения.

К вторичной обмотке трансформатора напряжения подключается параллельно вольтметр. Конструкция ТН. такова, что напряжение на вторичной обмотке U=const (100В). В редких случаях, напряжение на вторичной обмотке может быть U=(100/1,71)В.

Наличие в главной схеме трансформаторной подстанции измерительных трансформаторов обеспечивает высокую надёжность работы подстанции и является экономически выгодным, т.к. материальные затраты на их обслуживание является небольшими.

 

Силовые трансформаторы

Силовые трансформаторы – это электростатические устройства, предназначенные для трансформации напряжения при неизменной частоте сети, имеющих 2 силовых обмотки связывающихся между собой магнитной связью.

СТ устанавливаются, как правило, на электростанциях и распределительных подстанциях для обеспечения связей с энергосистемой и преобразование с целью электроснабжения потребителей.

В зависимости, от роли в энергосистеме, трансформаторы бывают:

ü Повышающие;

ü Понижающие.

Повышающие силовые трансформаторы применяются на электростанциях и повышающих электроподстанциях для передачи больших значений мощности на большие расстояния с небольшими потерями.

Понижающие силовые трансформаторы применяются на распределительных подстанциях для трансформации той мощности и энергии, которая была получена в результате выработки на ЭС и преобразована на повышающих подстанциях.

В основном, на станциях и подстанциях устанавливаются трехфазные трансформаторы. Они различаются по номинальному напряжения первичной обмотки (ВВ) и вторичной (НВ), в соотношении которых, находится коэффициент трансформации; числу фаз, мощности, исполнению.

По исполнению силовые тр-ры бывают – повышающие либо понижающие, с регулировкой коэффициента трансформации под нагрузкой или в её отсутствии; стержневые или броневые виды магнитопровода, расположению обмоток и т.д..

В большинстве случаев, трансформаторы изготавливаются 2-х обмоточные.

Но бывают СТ и 3-х обмоточные. Их применяют тогда, когда на подстанции выдачи мощности надо производить на 2-х напряжениях.

Такие обмотки называются – обмотки верхнего, нижнего и среднего напряжения.

Параметры трансформатора:

v Полная мощность;

v Частота сети;

v Номинальное напряжение;

v Номинальный ток;

v Потери активной и реактивной мощности;

v КПД

v Напряжение короткого замыкания;

v Ток холостого хода;

v Потери на ХХ и КЗ.

Обмотки трансформатора различаются по классу нагревостойкости от А (105 гр.ц) до С (свыше 180 гр.ц).

По конструктивному исполнению и типу охлаждения СТ бывают – сухие либо масляные; с дутьём и принудительной циркуляцией масла, с масловодяным охлаждением и естественным.

Силовые трансформаторы являются определяющими элементами для определения вариантов главной схемы, исходя из экономических соображений.



Расчётная часть

Условия работы:

· высота над уровнем моря не более 1000 м ;

· температура окружающей среды: при эксплуатации – от минус 45 С до плюс 50 С, при транспортировании и хранении – от минус 50 С до плюс 50 С;

· окружающая среда невзрывоопасная, не содержащая пыли, химически активных газов и паров в концентрациях, разрушающих покрытия металлов и изоляцию;

· рабочее положение – любое.

Технические характеристики

Номинальный первичный ток, А Номинальный вторичный ток, А Номинальная вторичная нагрузка с коэффициентом мощности cos y = 0,8, В-А Класс точности
       
       
500 5 10 1


Условия работы:

· высота над уровнем моря не более 1000 м ;

· температура окружающего воздуха - от минус 45°С до плюс 40°С для исполнения "У3" и от минус 10°С до плюс 45°С для исполнения "Т3";

· окружающая среда невзрывоопасная, не содержащая пыли, химически активных газов и паров в концентрациях, разрушающих покрытия металлов и изоляцию;

· рабочее положение – любое.

Технические характеристики

Наименование параметра Норма
Номинальное напряжение, кВ 10
Наибольшее рабочее напряжение, кВ 12
Номинальный первичный ток, А 20
Номинальный вторичный ток, А 5
Номинальная частота, Гц 50
Количество вторичных обмоток 2
Номинальная вторичная нагрузка при cos = ,8, В-А: обмотки для измерений обмотки для защиты   до 30 15

 

Выбор трансформатора напряжения в цепь 10 кВ

Трансформатор напряжения ЗНОЛ.06-10 УЗ предназначен для установки в комплектные распределительные устройства (КРУ) внутренней установки или другие закрытые распределительные устройства (ЗРУ), а также для встраивания в токопроводы турбогенераторов и служит для питания цепей измерения, автоматики, сигнализации и защиты в электрических установках переменного тока частоты 50 или 60 Гц в сетях с изолированной нейтралью. Допускается длительная эксплуатация трансформатора как силового. При этом мощность, отдаваемая трансформатором, не должна превышать предельную мощность, и нагрузка должна подключаться к основной вторичной обмотке. Трансформатор изготавливается в климатическом исполнении "У" или "Т" категории размещения 3.

Условия работы

· высота над уровнем моря не более 1000 м ;

· температура окружающей среды: при эксплуатации – от минус 45 С до плюс 50 С;

· окружающая среда невзрывоопасная, не содержащая агрессивных газов и паров в концентрациях, разрушающих металлы и изоляцию;

· рабочее положение – любое.



Технические характеристики:

 

 

Наименование параметра

ЗНОЛ.06-10УЗ

 

Класс напряжения, кВ

10

 

Наибольшее рабочее напряжение, кВ

12

 

Номинальное напряжение первичной обмотки, В

10000/Ц3

 

Номинальное напряжение осн. вторичной обмотки, В

100/Ц3

 

Номинальное напряжение доп. вторичной обмотки, В

100/Ц3 или 100

 

Номинальная мощность, В-А, в классе точности:
0,5

75

 

Номинальная мощность доп. вторичной обмотки в классе точности 3, В-А

300

 

Предельная мощность вне класса точности, В-А

630

 

Схема и группа соединения
обмоток

1/1/1-0-0

 

Номинальная частота, Гц

50

 

Испытательное напряжение, кВ:
одноминутное промышленной частоты
грозового импульса
грозового импульса срезанного

42

75

90

Расчётные данные

Ката Разъединитель РВО-10/630 Лож Разъединитель РВЗ-10/630 УЗ Ные Трансформатор тока ТПОЛ-10 Дан Трансформатор напряжения ЗНОЛ.06-10 УЗ Ные Вакуумный Выключатель ВБМЭ-10  

Uуст = 10 кВ

Uном = 10 кВ Uном = 10 кВ Uном = 10 кВ Uном = 10 кВ Uном = 10 кВ  

Imax = 28,76 А

Iном = 630 А Iном = 630 А Iном = 20 А Iном = 20 А Iном = 630 А  

Iп = 3,83кА

Iт.макс = 20 кА Iт.макс = 16 кА Iт.макс = 38 кА Iт.макс = 20 кА Iт.макс = 20 кА  

iу = 9,2 кА

Iдин.макс = 50 кА Iдин.макс = 41 кА Iдин.макс = 96 кА Iдин.макс = 52 кА Iдин.макс = 52 кА  

Вк = 13 кА 2 * сек

Вк = 1600 кА 2 * сек Вк = 1600 кА 2 * сек Вк = 260 кА 2 * сек Вк = 156 кА 2 * сек Вк = 1600 кА 2 * сек  

Количество

2 2 4 2 3                  






Заключение

 

Хочется отметить, что в связи с широким развитием электроснабжения промышленности; электроустановки на любом предприятии являются важным звеном, от которого, по большому счёту, определяется нормальная работа предприятия.

Эксплуатация электроустановок должна производиться при минимальных затратах материальных средств и рабочей силы, а выполнение рабочей программы должна достигаться путем совершенствования технологических процессов производства при наименьшем расходе электроэнергии.

Одним из наиболее действующих способов поддержания оборудования в должном техническом состоянии и продления срока службы является качественный и своевременный ремонт.

Электрическая подстанция, рассмотренная в данном курсовом проекте, является показателем качественного электроснабжения потребителей на данном этапе развития, соответствует всем стандартам по эксплуатации, и является неотъемлемым звеном в цепи энергосистемы. Здесь предусмотрены все возможные варианты надёжной качественной работы, экономические затраты на эксплуатацию ТП удовлетворяют современным требованиям, а также ремонт и ревизия электрооборудования являются безопасным для обслуживающего персонала.



Литература

1. Б.Ю. Липкин «Электроснабжение промышленных предприятий и установок», Москва, «Высшая школа», 1990 г.

2. Л.Д. Роткова, В.С. Козулин «Электрооборудование станций и подстанций», Москва, «Энергия», 1969 г.

3. Конспект лекций по предмету «Электрооборудование подстанций и промышленных предприятий».

4. Конспект лекций по предмету «Электроснабжение».

Интернет информация с сайтов:

5. www.twirpx.com

6. www.laborant.ru

7. www.rec.su

Содержание

 

Общая часть

Введение

1.1 Общие сведения об электроустановках

1.1.1 Вводная часть

1.1.2 Линии электрических передач

1.1.3 Распределительные устройства

1.2 Определение вариантов главной схемы

1.3 Общие сведения о высоковольтной аппаратуре

1.3.1 Центр питания

1.3.2 Системы сборных шин

1.3.3 Разъединители и ножи заземления

1.3.4 Высоковольтные выключатели

1.3.5 Трансформаторы тока

1.3.6 Трансформаторы напряжения

1.3.7 Силовые трансформаторы

2. Расчетная часть

2.1 Расчет и выбор силовых трансформаторов

2.2 Расчет потерь и выбор токоведущих частей на стороне 0,4 кВ

2.3 Расчет и выбор автоматических выключателей

2.4 Расчет и выбор элементов защиты и контроля в цепь 0,4 кВ

2.5 Расчёт токов короткого замыкания на стороне 0,4 кВ

2.6 Расчёт ввода и выбор высоковольтного оборудования

Заключение

Литература



Введение

 

Понятие «Энергия» произошло от греческого «energious»-мощь, сила, тепло. Электрическая энергия является наиболее удобным и дешёвым видом энергии. Широкое распространение электрической энергии обусловлено относительной лёгкостью её получения, преобразования, и возможностью передачи её на большие расстояния.

Энергетика, на сегодняшней день, является одной из важнейших структурных единиц, совокупность которых, поддерживает развитие технологического процесса и играет большую роль в организации человеческой цивилизации на данный момент.

В энергетике существует такое понятие как «Энергетическая система»- это совокупность устройств и установок, предназначенных для выработки, передачи, распределения и потребления электроэнергии и теплоэнергии, связанных между собой электрическими и тепловыми сетями. А также есть термин «Электрическая система»- это часть энергосистемы: РУ, генераторы, ЛЭП, приёмники и потребители электрической энергии. Отдельные энергосистемы имеет смысл объединения между собой, т.к. это облегчает задачу резервирование мощностей и повышает общий технологический уровень эксплуатации электроустановок.

В 1927 году на территории БССР уже действовала 141 электрическая станция, общей мощностью до 15 Мватт/час.

В 1931 году была организована Белорусская энергосистема.

К началу 1940 году мощность станций достигла 120 Мватт/час. А также в то время была построена первая крупная ЭС БелГРЭС, мощность 34,5 Мватт/час.

К 1944 году начались работы по восстановлению разрушенных во время Великой Отечественной Войны электростанций в уже освобождённых городах Минске, Витебске, Гомеле, Могилёве и Бресте.

В октябре 44-го были созданы организации, носившие названия «Управление энергетическим хозяйством», «БеларусьЭнерго». А также «МинскЭнерго», «БрестЭнерго», «ВитебскЭнерго», «ГомельЭнерго», «МогилёвЭнерго» и «ГродноЭнерго».

Ныне в Республике Беларусь насчитывается более 25 крупных действующих установок по выработке электроэнергии с общей установленной мощностью около 7,8 Гватт/час. Крупнейшей из них является Новолукомльская ГРЭС, общей мощностью 2412 Мватт/час.

Но по-прежнему, наша Республика сейчас не способна полностью обеспечить себя электрической энергией самостоятельно. Часть электроэнергии мы закупаем у других государств, в основном, у нашего «соседа» Российской Федерации.

На сегодняшний день сфера изучения энергетики Беларуси занимает далеко не последнее место в инфраструктуре и, в частности, в экономике.

Уделяется не маловажная роль использования ядерной энергетики в мирных целях (для производства электроэнергии). Планируется строительство АЭС на территории нашей Республики. Ввод в эксплуатацию первого энергоблока (ядерного реактора) станции запланирован на 2016 год.



Общие сведения об электроустановках

Вводная часть

Электроустановки – это совокупность машин, аппаратов, линий и вспомогательного оборудования; предназначенного для производства, преобразования, передачи, трансформации, и распределения электроэнергии; а также преобразования её в другой вид энергии.

Выделяют 2 вида электрических установок:

- ЭУ до 1000 вольт;

- ЭУ свыше 1000 вольт.

Такое разделение связано, с различием типов и конструкций аппаратов, а также с разницей в условиях безопасности и требованиях, предъявляемых при сооружении и эксплуатации электроустановок различных напряжений.

Также электроустановки потребителей характеризуются номинальным напряжением (Uном). Номинальным напряжением генераторов, трансформаторов, сетей и приёмников электроэнергии (электрических двигателей, ламп и т.п.) называется то напряжение, при котором они предназначены для нормальной работы.

Для систем электроснабжения сетей и электроприёмников (ЭП) напряжением до 1 кВ согласно ГОСТ 2128-83 сети и приёмники электроэнергии бывают напряжением: 220, 380, 660 вольт. А наибольшее рабочее напряжение может быть: 230, 400, 690 вольт.

Различают переменное напряжение однофазного тока (В):

A. 6;

B. 12;

C. 27;

D. 40

E. 60;

F. 110;

G. 220.

Переменное напряжение 3-фазного тока (В):

a. 40;

b. 60;

c. 220;

d. 380;

e. 660.

Напряжение постоянного тока (В):

- 6;

- 12;

- 27;

- 48;

- 60;

- 110;

- 220;

- 440.

В промышленных электроустановках напряжением до 1 кВ распространена 3-х и 4-х проводная система. Она позволяет питать однофазные и трёхфазные приёмники, включенные на линейное и фазное напряжение.

Для выработки электрической энергии служат электростанции. Это предприятия и установки, предназначенные для производства электроэнергии.

В зависимости от вида энергии, потребляемой первичным двигателем, электрические станции подразделяются:

v Тепловые;

v Гидро;

v Атомные;

v Гидроаккумулирующие;

v Газотурбинные;

v Маломощные ЭС местного масштаба.

Топливом для электростанций служат природные богатства. Например: уголь, торф, вода, ветер, солнце, а также атомная реакция (расщепление ядер урана, плутония).

Огромную роль в системах электроснабжения играют электрические подстанции – электроустановки, предназначенные для преобразования и распределения электроэнергии. Электрические подстанции промышленных (и не только) предприятий – это важные звенья в системе электроснабжения. Поэтому рассмотрение работы электрических станций и подстанций является очень важным этапом в подготовке грамотного специалиста в области энергетики.

Электрические подстанции бывают открытые либо закрытые.

 

Линии электрических передач

Для передачи электроэнергии на расстояния применяются линии электрических передач (ЛЭП). Они бывают 2-х типов:

§ Воздушные (ВЛЭП);

§ Кабельные (КЛЭП).

Для передачи электроэнергии напряжением до 10 кВ (редко до 35 кВ) используются кабельные линии, проложенные в земле. Изоляция надевается на каждую фазу линии, затем на весь кабель, а потом ставится внешняя оболочка.

Чем больше напряжение и ток, тем толще больше жилы, толще изоляция и прочнее оболочка. В КЛЭП на высокое напряжение оболочка используется свинцовая, а в качестве брони применяют сталь.

КЛЭП обычно применяют в больших населённых пунктах (городах).

Для передачи электроэнергии напряжением свыше 10 кВ (10,35,110,220,330,500,750,1150 кВ) вводятся в эксплуатацию воздушные линии, протянутые на опорах. Проводники, как правило, изготавливаются неизолированными. А также они могут быть по системе СИП. ВЛЭП также могут использоваться на напряжение и ниже 10 кВ. Их специальным образом скручивают и подвешивают на опорах. Для передачи высокого напряжения на большие расстояния провода покрывают смазкой повышенной горючести.

Основной металл, служащий для изготовления проводов ЛЭП - это медь и алюминий.

 

Дата: 2019-07-24, просмотров: 183.