Свойства и назначение сплава
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Ферросилиций – сплав кремния с железом и применяется как раскислитель и легирующая добавка при выплавке стали. Поэтому с железом кремний сплавляется в любых соотношениях (рис. 2.1) и образует ряд силицидов – Fe2Si3, FeSi, FeSi2, Fe3Si2 и др., из которых наиболее прочным является FeSi, его температура плавления 1410ºС и Δ H º273 = - 80,38 кДж/моль.

Система Fe–Si. Принятая диаграмма Fe–Si представлена

Кремний относится к ферритообразующим элементам и поэтому сужает область γ–Fe. Максимальная растворимость кремния в γ–Fe составляет 1,63%Si. Двухфазная область (a +γ) простирается до 1,94%Si. В системе существуют три эвтектики: первая, соответствующая содержанию 20%Si и температуре плавления 1195ºС, вторая- 51%Si и 1212ºС и третья – 59%Si и 1207ºС. В системе Fe–Si существует ряд силицидов: Fe3Si (14,28%Si), Fe2Si (20%Si), Fe5Si3 (23,18%Si), FeSi (33,46%Si) и FeSi2 (50,15%Si).

Устойчивы до температуры плавления силициды FeSi и FeSi2. Моносилицид FeSi (ε-фаза) имеет область гомогенности (33,2-34,2 % Si), кристаллизуется в кубической системе (а = 0,44898 нм). На рис. 1.2 отмечена область гомогенности силицида FeSi2,3 (ξ-фаза).

Анализ частной диаграммы FeSi–Si

подтверждает, что при 1220ºС образуется высокотемпературная модификация FeSi2,3 (ξ-фаза), называемая лебоитом, которая при 940ºС эвтектоидно распадается на кремний и низкотемпературную модификацию сисилицида FeSi2. Эта же модификация образуется при 982ºС по перитектоидной реакции:

 

FeSi + FeSi2,3 D FeSi2 .

 

В частной системе FeSi–Si имеются две эвтектики: FeSi + FeSi2,3 + FeSi2,3 + Si при 1206ºС и 1202ºС соответственно. Механизм образования FeSi2 (β - FeSi2) при затвердевании эвтектики FeSi2,3 (α-Fe2Si5) + (ε-FeSi) зависит от температуры. Выше 865ºС β-FeSi2 образуется по перитектической реакции: α-Fe2Si5 + ε-FeSi " β-FeSi2. Скорость образования β-FeSi2 снижается при повышении температуры и выше 950ºС фаза β-FeSi2 не образуется даже после выдержки 200 ч, ниже 860ºС β-FeSi2 образуется в результате диспропорционирования α-Fe2Si5 " β-FeSi2 + Si. При 800ºС α-Fe2Si5 полностью переходит в β-FeSi2 через 4ч.

Кривая ликвидус сплавов системы Fe-Si имеет сложный характер и это следует учитывать при разработке технологии выплавки и разливки ферросилиция. При увеличении атомной доли кремния до 20% температура ликвидус снижается с 1539ºС для чистого железа до эвтектической 1195ºС, а затем повышается и достигает максимального значения 1410ºС для эквиатомного состава, соответствующего моносилициду FeSi. В интервале концентраций кремния частной диаграммы FeSi-FeSi2,3 температура снижается до эвтектической 1206ºС. Силицид FeSi2,3 плавится при 1220ºС. В частной системе FeSi2,3 - Si температура повышается от температуры эвтектики 1202ºС до температуры плавления чистого кремния 1415ºС.

Микроструктура ферросилиция.

Сплав марки ФС 45 промышленной выплавки после травления аншлифов (1 часть HF + 10 частей HNO3 + 10 частей ледяной уксусной кислоты) представлен светлой эвтектической фазой, в которой сконцентрирован Al, и крупными серыми дендритами ε-фазы (FeSi), содержащий в сравнительно больших количествах Cr и Mn (в марке ФС 45 допускается 0,6% Mn и 0,5% Cr). Последние изоморфно замещают атомы железа в моносилициде [(Fe, Mn, Cr) Si].

В сплаве ФС 45 соотношение плотностей ε- и лебоитной фазы составляет 1 : 0,78. В зависимости от содержания кремния в сплаве и скорости кристаллизации слитка лебоит может обогащать верхнюю или нижнюю части слитков.

Вследствие значительного различия плотностей железа и кремния существует обратная зависимость между плотностью ферросилиция и содержанием в нем кремния. Ниже приведены температура плавления и плотность ферросилиция марки ФС 45:

 

Марка ферросилиция..................................................... ФС 45

Массовое содержание кремния, %............................... 41 – 47

Температура плавления ºС, ..................................... 1210 – 1300

Кажущаяся плотность, г/см......................................... 4,9 – 5,4

 

Кремний является хорошим раскислителем, поэтому его сплавы используют при производстве сталей многих марок. Расход ферросилиция (в пересчете на ФС 45) составляет ~ 0,65% от выпуска стали. Обычно в сталях содержится 0,12-0,35% Si, в высоколегированных кремнистых сталях его содержание достигает 2-3% и более. Введение в конструкционную сталь до 2% Si повышает ее твердость, прочность, пределы упругости и текучести, способствует образованию волокнистой структуры, кремний улучшает свойства рессор и пружин. В шарикоподшипниковой стали (ШХ15СГ, Si – 0,4-0,65%) кремний уменьшает критическую скорость закалки, снижая тем самым склонность стали к короблению и трещинообразованию при закалке. В электротехнической стали (Si 0,8-4,5%) кремний является единственным элементом, который улучшает электротехнические свойства железа. Наличие кремния увеличивает магнитную проницаемость и электросопротивление стали, понижает коэрцитивную силу, уменьшая тем самым потери и на перемагничивание, и на вихревые токи. В трансформаторной стали (Si – 3-4,5%) кремний снижает потери на гистерезис. В сочетании с другими элементами, особенно с хромом, кремний добавляют в инструментальные, коррозионно- и жаростойкие, рессорно-пружинные и другие стали.

Ферросилиций также широко используют в качестве восстановителя в металлотермических процессах для приготовления термитных смесей и взрывчатых веществ, при получении кремнийорганических соединений, для изготовления сварочных электродов и в ряде других областей промышленности [3-5, 13].

 

Выбор типа печи

 

Все цехи ферросплавного завода по назначению делятся на две группы: основные плавильные цеха, предназначенные для получения готовой продукции завода – ферросплавов, и вспомогательные цехи, обеспечивающие нормальную работу основных цехов. В свою очередь, плавильные цехи можно классифицировать по способу выплавки получаемых в них ферросплавов.

Ферросплавы производят двумя основным способами: электропечным и металлотермическим. Основное количество ферросплавов (96 % от общего объема производства) получают электропечным способом. Электропечные способы производства ферросплавов разделяют на непрерывные и периодические.

Характер процесса производства ферросплавов (непрерывный или периодический) определяет тип применяемого плавильного агрегата, систему дозировки шихты, способ разливки сплавов и тем самым проектные решения ферросплавных цехов. Таким образом, все действующие и проектируемые цехи по характеру применяемого процесса производства ферросплавов можно разделить на две группы: цехи для непрерывных процессов и цехи для периодических.

В зависимости от периода постройки и мощности установленных электропечей можно выделить четыре типа ферросплавных цехов по производству ферросилиция (ФС 45) для непрерывных процессов: с печами малой мощности, с печами средней мощности, с прямоугольными печами большой мощности.

В дипломе рассматривается технология производства ферросилиция марки ФС 45.

ФС 45 выплавляют в закрытой рудовосстановительной печи среднем мощности (печь типа РК3-24) непрерывным процессом.

Цехи по производству ферросилиция (ФС 45) с печами средней мощности, построенные в 60-70 гг. , оборудованы закрытыми рудовосстановительными печами мощностью 16,5-27 МВ·А. В дипломе рассматривается печь типа РК3-24. На печи установлена система улавливания и очистки отходящих газов. Металл разливается с применением конвейерных машин. Цех состоит только из двух пролетов одинаковой высоты: печного и разливочного.

Печь снабжается шихтой из отделения шихтоподготовки, расположенного в отдельном здании. Дозировка шихты осуществляется непрерывно, шихтоподача автоматизирована.

Цехи этого типа отличаются лучшими условиями труда и более высокой степенью механизации вспомогательных и ремонтных работ.

Выбор способа производства сплава зависит от типа применяемого плавильного агрегата. Так, производство ферросилиция марки ФС 45 углеродотермическим способом (УТП) осуществляется в рудовосстановительной электропечи.

При выборе мощности ферросплавной электропечи следует исходить из максимального ее значения. Практика показывает, что увеличение мощности электропечи позволяет улучшить все основные технико-экономические показатели производства (производительность труда, удельный расход электроэнергии, капитальные и эксплуатационные затраты).

Увеличение единичной мощности ферросплавной электропечи сопровождается одновременным укрытием и герметизацией подсводового пространства. Применение закрытой печи обеспечивает утилизацию физического и химического тепла колошникового газа, охрану окружающей среды, улучшение санитарно-гигиенических условий труда и эксплуатации оборудования [7].

Дата: 2019-07-24, просмотров: 144.