Расчет инжекции не основных носителей тока
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

В основе работы полупроводниковых светоизлучающих диодов лежит ряд физических явлений, важнейшие из них: инжекция не основных носителей в активную область структуры электронно-дырочным гомо- или гетеропереходом; излучательная рекомбинация инжектированных носителей в активной области структуры.

Явление инжекции не основных носителей служит основным механизмом введения неравновесных носителей в активную область структуры светоизлучающих диодов (эти приборы часто называют инжекционными источниками света). Вопросы физики протекания инжекционного тока в р-n-переходах рассмотрены в работах Шокли и многих монографиях. В обобщенном виде инжекция носителей р-п-переходом может быть представлена следующим образом (рисунок 2.5).

Когда в полупроводнике создается р-n-переход, то носители в его окрестностях распределяются таким образом, чтобы выровнять уровень Ферми. В области контакта слоев p- и n-типов электроны с доноров переходят на ближайшие акцепторы и образуется дипольный слой, состоящий из ионизованных положительных доноров на n-сторон и ионизованных отрицательных акцепторов на р-стороне. Электрическое поле дипольного слоя создает потенциальный барьер, препятствующий дальнейшей диффузии электрических зарядов [5].

При подаче на р-n-переход электрического смещения в прямом направлении U потенциальный барьер понижается, вследствие чего в р-область войдет добавочное количество электронов, а в n-область - дырок. Такое диффузионное введение не основных носителей называется инжекцией.

 


І- зона проводимости; ІІ –запрещённая зона; ІІІ – валентная зона

Рисунок 2.5 - Энергетическая диаграмма, поясняющая механизм действия инжекционного светодиода (а); его яркостная характеристика (б) и эквивалентная схема.

 

Концентрация инжектированных электронов на границе р-n-перехода и р-области n'(хp) определяется выражением:


п'(Хр)=np·exp(еU/kT),                                           (2.7)

 

где nр-концентрация равновесных электронов в р-области;

k-константа Больцмана;

Т-температура;

e-заряд электрона.

Концентрация инжектированных носителей зависит только от равновесной концентрации не основных носителей и приложенного напряжения.

Поскольку инжектированные носители рекомбинируют с основными носителями соответствующей области, то их концентрация п'р в зависимости от расстояния от р-n-перехода изменяется следующим образом (для электронов в р-области):

 

n'p=n(xp)exp[-(x-xp)/Ln],                               (2.8)

 

где Ln - Диффузионная длина электронов.

Как следует из формулы (2.8) концентрация избыточных носителей экспоненциально спадает по мере удаления от р-n-перехода и на расстоянии Ln (Lр) уменьшается в e раз, где e » 2,72 (основание натурального логарифма).

Диффузионный ток In, обусловленный рекомбинацией инжектированных электронов, описывается выражением:

 

In=eDnnp[exp(eU/kT)-1]/Ln                (2.9)

 

где Dn - коэффициент диффузии электронов. Диффузионный ток дырок In описывается аналогичным выражением. В случае, когда существенны оба компонента тока (электронный и дырочный), общий ток I описывается формулой:

 


I = (In0 + Iр0)·[exp(eU/kT) - 1],                       (2.10)

 

где

 

In0 = eDn·np/Ln; Ip0=eDp*pn/Lp.               (2.11)

 

Особенность решения вопросов инжекции при конструировании светоизлучающих диодов, в которых, как правило, одна из областей p-n-структуры оптически активна, т.е. обладает высоким внутренним квантовым выходом излучения, заключается в том, что для получения эффективной электролюминесценции вся инжекция неосновных носителей должна направляться в эту активную область, а инжекция в противоположную сторону-подавляться [4].

Если активна область р-типа, то необходимо, чтобы электронная составляющая диффузионного тока преобладала над дырочной, а интенсивность рекомбинации в области объемного заряда была низка. Коэффициент инжекции gп , т.е. отношение электронной компоненты тока In0 к полному прямому току I=In0+Ip0, определяется по формуле:

 

gn=LpNd/[LpNd+(Dp/Dn)·LnNa],         (2.12)

 

где Nd и Na - концентрации доноров и акцепторов в л- и р -областях.

Из выражения (2.6) следует, что для получения величины gп, близкой к 1, необходимо, чтобы Nd>>Na, Lp>Ln, Dn>Dp. Решающую роль, безусловно, имеет обеспечение соотношения Nd>>Na. Однако повышение концентрации носителей в инжектирующей области имеет свои пределы. Как правило, значения Nd (или Na) не должны превышать (1-5)·I019 см-3, так как при более высоком уровне легирования возрастает концентрация дефектов в материале, что приводит к увеличению доли туннельного тока и ухудшению, тем самым, инжектирующих свойств р-n-перехода [2]. Как будет видно из дальнейшего изложения, для повышения внутреннего квантового выхода излучательной рекомбинации в прямозонных полупроводниках необходимо повышать концентрацию носителей и в активной области, в связи с чем возникают дополнительные трудности с обеспечением одностороннего характера инжекции. Таким образом, в гомопереходах существуют трудности по обеспечению высокого коэффициента инжекции носителей в активную область, обусловленные противоречивыми требованиями к легированию p- и n-областей структуры для достижения высокого коэффициента инжекции и максимального квантового выхода электролюминесценции в активной области. В некоторых полупроводниках высокий коэффициент инжекции носителей в одну из областей р-n-перехода может быть обеспечен разницей в подвижности электронов и дырок. Так, в GaAs и других прямозонных соединениях высокий коэффициент инжекции электронов в р-область может быть осуществлен за счет более высокой подвижности электронов.

 




Дата: 2019-07-24, просмотров: 159.