Электрические свойства и характеристики
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

К этой группе свойств относятся электрическая проводимость и диэлектрические характеристики. Электрическая проводимость стекломассы имеет решающее значение для электрической варки стекол. Диэлектрические характеристики имеют важное значение при эксплуатации изделий из стекла (изоляторов, элементов микроэлектронных схем и т.п.).

Электрическая проводимость. Электрическая проводимость стекломассы характеризуется удельной проводимостью, обратной по величине удельному электрическому сопротивлению: c = 1/r

Единица измерения удельного электрического сопротивления Ом*м, удельной электрической проводимости 1/(Ом*м) или См/м. Удельное сопротивление и электрическая проводимость стекла резко изменяются с изменением температуры. При комнатной температуре удельное сопротивление натрий-кальций-силикатного стекла равно 10(11)-10(13) Ом*м, а в расплавленном состоянии (при температуре варки) оно снижается до 0,001-0,1 Ом*м. Удельное сопротивление расплавленных стекол при температурах варки, осветления и выработки определяет технологию электроподогрева и электрической варки стекла, конструкцию и размеры электропечи, а также выбор электрооборудования.

Стекломасса является ионным проводником. Переносчиками электрического тока служат главным образом ионы щелочных металлов. В табл. 1.1 приведены данные по удельному электрическому сопротивлению промышленных стекол.

Удельное электрическое сопротивление снижается с ростом содержания щелочных оксидов (Na2О, К2О), причем при увеличении оксида натрия оно снижается в большей степени, чем при увеличении оксида калия. Введение в состав стекла оксидов двухвалентных металлов повышает удельное электрическое сопротивление. Особенно большое влияние оказывают РbО, ВаО, СаО. При одновременном присутствии в составе стекла двух оксидов щелочных металлов, например Na2О и К2О, удельное электрическое сопротивление повышается по сравнению с удельным электрическим сопротивлением стекол, содержащих только один щелочной оксид (эффект двух щелочей).

Диэлектрические характеристики. Силикатные стекла при температурах ниже Тg являются диэлектриками. В электрическом поле в диэлектриках происходит поляризация, т.е. локальное пространственное перераспределение зарядов.

Диэлектрические свойства стекла имеют важное значение для ряда отраслей промышленности, особенно для электротехники, микроэлектроники и характеризуются диэлектрической проницаемостью, диэлектрическими потерями, электрической прочностью.

Диэлектрическая проницаемость количественно характеризует поляризацию диэлектрика и определяется отношением емкостей вакуумного конденсатора и конденсатора с диэлектриком (безразмерная величина).

Диэлектрическая проницаемость стекол зависит от их состава, изменяясь для силикатных стекол от 3,81 (для кварцевого стекла) до 16,2 (для стекол с содержанием оксидов тяжелых металлов до 80%). Она возрастает с увеличением в составе стекла оксидов щелочных и щелочноземельных металлов. Для обычных промышленных стекол диэлектрическая проницаемость находится в пределах 5-7.

Диэлектрические потери характеризуют долю энергии переменного электрического поля, превратившуюся в тепловую в объеме диэлектрика. Диэлектрические потери стекла характеризуются значением тангенса угла, связанного со сдвигом фаз напряженности электрического поля и электрической индукции.

Химический состав влияет на диэлектрические потери так же, как и на электропроводность. Кварцевое стекло имеет очень малые потери (tg d = 0,0002), а стекла, содержащие оксиды щелочных и щелочноземельных металлов — более высокие (tg d = 0,009). Закаленное стекло имеет диэлектрические потери в два раза больше, чем отожженное стекло.

Кристаллизация стекла приводит обычно к снижению его диэлектрических потерь, особенно когда щелочные ионы входят в состав кристаллической фазы.

Электрическая прочность характеризует способность диэлектрика выдерживать действие высокого напряжения без разрушения и ухудшения диэлектрических характеристик. Электрическая прочность оценивается обычно величиной пробивного напряжения (Uпр), отнесенной к толщине диэлектрика в месте пробоя (размерность — кВ/м). Для обычных промышленных стекол Uпр составляет (1,6-6,4) x 104 кВ/м, кварцевого стекла — 2-4 x 104 кВ/м. Электрическая прочность очень важна для изоляторов высоковольтных линий передачи электроэнергии. Поэтому для изготовления изоляторов применяют алюмосиликатные малощелочные стекла, обладающие высокой электрической прочностью.

Плотность

Плотность характеризует количественное содержание массы вещества в единице объема. Плотность стекол в основном зависит от их состава и в меньшей мере от теплового прошлого. Плотность промышленных стекол, кг/м3, дана ниже.

 

Кварцевое стекло . . . . . . . . . . . . . . . . . . . . ….... . . . . . . . . . . . . .2202 ± 5

Бесцветные и цветные натрий-кальций-силикатные . . . . . . 2480-2530

Свинцовые хрустали с содержанием РbО, %

4-12 . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . 2400-2700

12-30 . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2700-3200

Оптические стекла. .. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 2300-5200

 

При повышении температуры от 20 до 1300°С плотность большинства технических стекол уменьшается на 6-12%. Плотность закаленных стекол на 80-90 кг/м3 ниже, чем плотность нормально отожженного стекла того же состава.

Плотность стекла чувствительна к изменениям химического состава. В связи с этим на стекольных заводах особенно с высокоскоростной механизированной выработкой изделий можно проводить систематический анализ плотности стекла во времени и сопоставлять полученные данные с колебаниями состава стекла, скоростью работы машин, качеством изделий и другими показателями. Это позволяет принять оперативные меры по ликвидации тех или иных нарушений технологического процесса.

Однородность стекол характеризует степень постоянства плотности и, следовательно, химического состава стекла в различных точках образца или изделия. Однородность важна для анализа правильности ведения технологического процесса. Наиболее распространенным методом определения однородности является метод разделения порошка по плотности. Однородность оценивают в градусах Цельсия (температурный интервал между началом и концом всплывания частиц стеклянного порошка в жидкости при центрифугировании). Однородность листовых стекол считается нормальной, если ее значение не превышает 2,5°С, стекол для прессованных и выдувных изделий — 3,5°С.

Дата: 2019-07-24, просмотров: 168.