Материалы из натуральной древесины применяют в виде пиломатериалов и заготовок. В зависимости от размеров поперечного сечения различают брусья, ширина и толщина которых свыше 100 мм; бруски шириной не более двойной толщины; доски при ширине более двойной толщины (тонкие узкие доски называются планками).
Пиломатериалы хвойных пород применяют более широко, поскольку они обладают высокой прочностью, меньше подвержены загниванию, особенно сосна; из лиственных пород дуб и ясень хорошо поддаются гнутью; бук и береза служат их заменителями. Хвойные и твердые лиственные породы применяют для силовых нагруженных деталей. Мягкие породы (липа) являются несиловыми материалами. Хвойные пиломатериалы используют в судостроении, в автотранспорте (детали грузовых автомобилей), в конструкциях грузовых железнодорожных вагонов, сельскохозяйственных машин и т. д. Заготовки из древесины используются для тех же целей и моделей.
Шпон — широкая ровная стружка древесины, получаемая путем лущения или строгания. Толщина листов шпона от 0,55 до 1,5 мм. Шпон является полуфабрикатом для изготовления фанеры, древесных слоистых пластиков и выклейки гнутых деталей. Шпон с красивой текстурой (дуб, бук и др.) используется в качестве облицовочного материала для изделий из древесины.
Фанера — листовой материал, получаемый путем склейки слоев шпона. Толщина фанеры от 1 до 12 мм, более толстые материалы называют плитами. В зависимости от склеивающего шпон клея и степени водостойкости фанера выпускается следующих марок: ФСФ на фенолоформальдегидном клее с повышенной водостойкостью, ФК — на карбамидном и ФБА на альбуминоказеиновом клеях со средней водостойкостью и ФБ на белковых клеях ограниченной водостойкости. Березовая фанера имеет вдоль волокон рубашек Ơв = 6,5 -г 8 кгс/мм2.
Прессованная древесина получается при горячем прессовании брусков, досок, заготовок, при этом она подвергается специальной термообработке в уплотненном состоянии.
Прессованная древесина имеет следующие свойства: объемную массу 1,1-1,42 г/см3, предел прочности вдоль волокон при растяжении 14-23 кгс/мм2, при сжатии 9-13 кгс/мм2, при изгибе 15-20 кгс/мм2, ударную вязкость 60-80 кгс-см/см2.
Прессованная древесина является заменителем черных и цветных металлов и пластмасс. Она широко применяется для изготовления деталей машин, работающих при ударных нагрузках (кулачки, сегменты зубчатых передач, подшипники, втулки и т. д.). Вкладыши из древесины по сравнению с бронзовыми имеют вдвое меньший износ, снижается расход смазочного масла.
Древесностружечные плиты изготовляют горячим прессованием древесной стружки со связующим. Плиты выпускают однослойными (ПС-1, ПТ-1), трехслойными (ПС-3, ПТ-3) и облицованными шпоном, фанерой, бумагой (ЭС, ЭМ).
. Древесностружечные плиты легкие, имеют объемную массу 0,35-0,45 г/см3, Ơи = 0,5 кгс/мм2, обладают теплоизоляционными свойствами [λ = = 0,045 ккал/(м · ч°С)]. Для тяжелых и сверхтяжелых плит объемная масса достигает 0,75—1,1 г/см3 и Ơ„ = 2,1 - 5,3 кгс/мм2. Древесностружечные плиты применяют для пола и бортов грузовых машин и прицепов, в вагоностроении, в строительстве, для производства мебели и т. д.
Древесноволокнистые плиты изготовляют из древесных волокон (размельченной древесины), иногда с добавками связующих составов. Под действием высокой температуры и большого давления древесные волокна спрессовываются в равнопрочный материал. Плиты подразделяют на мягкие пористые (М-4, М-12, М-20), полутвердые (ПТ-100), твердые (Т-350 Т-400) и сверхтвердые (СТ-500). В обозначении марки плит цифры означают Ơ„ в кгс/см2. В промышленности выпускают также акустические плиты, имеющие коэффициент звукопоглощения 0,2-0,3 при частоте колебаний 300 Гц и 0,4-0,5 при 1000 Гц. Древесноволокнистые плиты применяют для облицовки пассажирских вагонов, внутренней отделки автобусов в радиотехнической промышленности, в строительстве и т.д.
Неорганические материалы
Неорганическим материалам присущи негорючесть, высокая стойкость к нагреву, химическая стойкость, неподверженность старению, большая твердость, хорошая сопротивляемость сжимающим нагрузкам. Однако они обладают повышенной хрупкостью, плохо переносят резкую смену температур, слабо сопротивляются растягивающим и изгибающим усилиям и имеют большую плотность По сравнению с органическими полимерными материалами.
Основой неорганических материалов являются главным образом окислы и бескислородные соединения металлов. Поскольку большинство неорганических материалов -содержит различные соединения кремния с другими элементами, эти материалы объединяют общим названием силикатные. В настоящее время применяют не только соединения кремния, но и чистые окислы алюминия, магния, циркония и др., обладающие более ценными техническими свойствами, чем обычные силикатные материалы.
Неорганические материалы подразделяют на неорганическое стекло, стеклокристаллические материалы — ситаллы и керамику.
Неорганическое стекло
Неорганическое стекло следует рассматривать как особого вида затвердевший раствор — сложный расплав высокой вязкости кислотных и основных окислов.
Стеклообразное состояние является разновидностью аморфного состояния вещества. При переходе стекла из расплавленного жидкого состояния в твердое аморфное в процессе быстрого охлаждения и нарастания вязкости беспорядочная структура, свойственная жидкому состоянию, как бы «замораживается;). В связи с этим неорганические стекла характеризуются неупорядоченностью и неоднородностью внутреннего строения.
Стеклообразующий каркас стекла представляет собой неправильную пространственную сетку, образованную кремнекислородными тетраэдрами [SiO4]4-. На рис. 8 (а) показана такая сетка кварцевого стекла. При частичном изоморфном замещении кремния в тетраэдрах, например, на алюминий или бор, образуется структурная сетка алюмосиликатного [SixAlO4]z- ~ или боросиликатного [SixBO4]z- стекол. Ионы щелочных (Na, К) и щелочноземельных (Са, Mg, Ва) металлов называются модификаторами; в структурной сетке стекла они располагаются в промежутках тетраэдрических группировок (рис. 8(б)). Введение Na2O или других модификаторов разрывает прочные связи Si — О — Si и снижает прочность, термо- и химическую стойкость стекла, одновременно облегчая технологию его производства. Большинство стекол имеет рыхлую структуру с внутренней неоднородностью и поверхностными дефектами.
Рис. 8. Структура неорганического стекла:
а - кварцевого;
6 - натрийсиликатного
В состав неорганических стекол входят стеклообразующие окислы кремния, бора, фосфора, германия, мышьяка, образующие структурную сетку и модифицирующие окислы натрия, калия, лития, кальция, магния, бария, изменяющие физико-химические свойства стекломассы. Кроме того, в состав стекла вводят окислы алюминия, железа, свинца, титана, бериллия и др., которые самостоятельно не образуют структурный каркас, но могут частично замещать стеклообразующие и этим сообщать стеклу нужные технические характеристики. В связи с этим промышленные стекла являются сложными многокомпонентными системами.
Стекла классифицируют по ряду признаков: по стекло образующему веществу, по содержанию модификаторов и по назначению.
В зависимости от химической природы стекло образующего вещества стекла подразделяют на силикатные (SiO2),
алюмосиликатные (А12О3 —SiO2),
боросиликатные (В2О3 — SiO2),
алюмоборосиликатные (А12ОЭ — В2О3 — SiO2),
алюмофосфатные (А12О3—РгО5) и др.
По содержанию модификаторов стекла бывают щелочными (содержащими окислы Na2O, К2О), бесщелочными и кварцевыми. По назначению все стекла подразделяют на технические (оптические, светотехнические,, электротехнические, химико-лабораторные, приборные, трубные); строительные (оконные, витринные, армированные, стеклоблоки) и бытовые (стеклотара, посудные, бытовые зеркала и т. п.).
Технические стекла в большинстве относятся к алюмоборосиликатной группе и отличаются разнообразием входящих окислов. Стекла выпускаются промышленностью в виде готовых изделий, заготовок или отдельных деталей!
Общие свойства стекла. При нагревании стекло плавится в некотором температурном интервале, который зависит от состава. Для промышленных силикатных стекол температура стеклования te = 425 - 600"С, температура размягчения tp лежит в .пределах 600 — 800сС. В интервале температур между t0 и tр стекла находятся в высоко вязком пластическом состоянии. При температурах выше tp (1000—1100°С) проводятся все технологические процессы переработки стекломассы в изделия.
Свойства стекла, как и всех аморфных тел, изотропны. Плотность колеблется от 2,2 до 6,5 г/см3 (с окислами свинца, бария —до 8 г/см3).
Механические свойства стекла- характеризуются высоким сопротивлением сжатию (50 — 200 кгс/мм-2), низким пределом прочности при растяжении (3 — 9 кгс/мм2) и изгибе (5 —15 кгс/мм2).. Модуль упругости высокий (4500 до 104 кгс/мм2), коэффициент Пуассона μ. = 0,184 -0,26. Твердость стекла, как и других неорганических материалов, часто определяется приближенным методом царапания по минералогической шкале Мооса и равна 5—7 единицам (за 10 единиц принята твердость алмаза, за единицу — талька). Ударная вязкость стекла низкая, оно хрупкое {а = 1,54-2,5 кгс-см/см2). Более высокие механические характеристики имеют стёкла бесщелочного состава и кварцевые.
Важнейшими специфическими свойствами стекол являются их оптические свойства: светопрозрачность, отражение, рассеивание, поглощение и преломление света. Обычное неокрашенное листовое стекло пропускает до 90%, отражает примерно 8% и поглощает около 1% видимого и частично инфракрасного света; ультрафиолетовые лучи поглощает почти полностью. Кварцевое стекло является прозрачным для ультрафиолетовых лучей. Коэффициент преломления стекол составляет 1,47 — 1,96, коэффициент рассеяния (дисперсии) находится в интервале от 20 до 71. Стекло с большим содержанием РЬО поглощает рентгеновские лучи.
Термостойкость стекла характеризует его долговечность в условиях разных изменений температуры. Она определяется разностью температур, которую стекло может выдержать без разрушения при его резком охлаждении в воде (0°С). Коэффициент линейного расширения а стекла составляет от 5,6-10" 7 1/°С (кварцевое) до 90-10~7 1/°С (строительное), коэффициент теплопроводности—от 0.57 до 1,3 ккал/(м-ч°С). Для большинства видов стекол термостойкость колеблется от 90 до 170°С, а для кварцевого стекла она составляет 800 — 1000°С. Химическая стойкость стекол зависит от образующих" их компонентов: окислы SiO2, ZrO2 , TiO2, B2O3, AI2O3, CaO, MgO, ZnO обеспечивают высокую химическую стойкость, а окислы Li2O, Na2O, K2O, BaO u РЬО, наоборот, способствуют химической коррозии стекла. Механическая прочность и термостойкость стекла могут' быть повышены путем закалки и термохимического упрочнения.
Закалка, заключается в нагреве стекла до температуры выше tc и последующем быстром и равномерном охлаждении в потоке воздуха или в. масле. При этом сопротивление статическим нагрузкам увеличивается в 3 — 6 раз, ударная вязкость в 5 —7 раз. При закалке повышается также термостойкость стекла..
Термохимическое упрочнение основано на глубоком изменении структуры стекла и свойств его поверхности. Стекло подвергается закалке в подогретых кремнийорганических жидкостях, в результате чего на поверхности материала образуются полимерные пленки; этим создается дополнительное, по сравнению с результатом обычной закалки, упрочнение. Повышение прочности и термостойкости можно получить травлением за* каленного стекла плавиковой кислотой, в результате чего удаляются поверхностные дефекты, снижающие его качество.
Силикатные триплексы представляют собой два листа закаленного стекла (толщиной 2 — 3 мм), склеенные прозрачной, эластичной полимерной пленкой. При разрушении триплекса образовавшиеся неострые осколки удерживаются на полимерной пленке. Триплексы бывают плоскими' и гнутыми.
Термопан — трехслойное стекло, состоящее из двух стекол и воздушного промежутка между ними. Эта воздушная прослойка обеспечивает теплоизоляцию.
Применение технических стекол. Для остекления транспортных средств используют преимущественно триплексы, термопан и закаленные стекла.
Оптические стекла, применяемые в оптических приборах и инструментах, подразделяют на кроны, отличающиеся малым преломлением, и флинты— с высоким содержанием окиси свинца и большими значениями коэффициента преломления. Тяжелые флинты не пропускают рентгеновские и лучи. Светорассеивающие стекла содержат в своем составе фтор.
Остекление кабин и.помещений, где находятся пульты управления мартеновских и электрических дуговых печей, прокатных станов и подъемных кранов в литейных цехах, выполняется стеклами, содержащими окислы железа и ванадия, которые поглощают около 70% инфракрасного излучения в интервале длин волн 0,7 — 3 мкм.
Кварцевое стекло вследствие высокой термической и химической стойкости применяют для тиглей, чаш, труб, наконечников, лабораторной посуды. Близкое по свойствам к кварцевому стеклу, но более технологичное кварцоидное стекло используют для электроколб, форм для точного литья и т.д.
Электропроводящие (полупроводниковые) стекла: халькогенидные и оксидные ванадиевые, находят широкое применение в качестве термисторов, фотосопротивлений.
Теплозвукоизоляционные стекловолокнистые материалы. Эти материалы имеют рыхловолокнистую структуру с большим количеством воздушных прослоек, волокна в них располагаются беспорядочно. Такая структура сообщает этим материалам малую объемную массу (от 20 до 130 кг/м3) и низкую теплопроводность [λ= 0,030-0,0488 ккал/(м-ч-0С)].
Разновидностями стекловолокнистых материалов являются стекловата, применение которой ограничено ее хрупкостью; материалы АСИМ, АТИМС, АТМ-3, состоящие из стекловолокон, расположенных между двумя слоями стеклоткани или стеклосетки, простеганной стеклонитками. Они применяются в интервале температур от — 60 до 450 —600°С. Иногда стекловолокна сочетают с термореактивной смолой, придающей матам более устойчивую рыхлую структуру (материал АТИМСС), рабочие температуры — до 150°С. Материалы, вырабатываемые из короткого волокна и синтетических смол, называются плитами. Коэффициент звукопоглощения плит при частоте 200-800 Гц равен 0,5; при частоте 8000 Гц - 0,65.
Стекловату, маты, плиты применяют для теплозвукоизоляции кабин самолетов, кузовов автомашин, железнодорожных вагонов, тепловозов, электровозов, корпусов судов, в холодильной технике, ими изолируют различные трубопроводы, автоклавы и т. д.
Дата: 2019-07-24, просмотров: 205.